def preprocess_one_shot(self, filename_queue): img0, img1, img2 = self.read_and_decode(filename_queue) img0 = img0 / 255. img1 = img1 / 255. img2 = img2 / 255. if self.is_normalize_img: img0 = mvn(img0) img1 = mvn(img1) img2 = mvn(img2) return img0, img1, img2
from utils import mvn #-------------------------------------------------------------------------- config = config_dict('./config/config.ini') restore_model = config['test']['restore_model'] b_img0 = tf.placeholder(tf.float32, shape=(1, None, None, 3)) b_img1 = tf.placeholder(tf.float32, shape=(1, None, None, 3)) b_img2 = tf.placeholder(tf.float32, shape=(1, None, None, 3)) #b_img0 = tf.placeholder(tf.float32, shape=(1, 384, 512, 3)) #b_img1 = tf.placeholder(tf.float32, shape=(1, 384, 512, 3)) #b_img2 = tf.placeholder(tf.float32, shape=(1, 384, 512, 3)) b_img0 = mvn(b_img0) b_img1 = mvn(b_img1) b_img2 = mvn(b_img2) img_shape = tf.shape(b_img0) h = img_shape[1] w = img_shape[2] new_h = tf.where(tf.equal(tf.mod(h, 64), 0), h, (tf.to_int32(tf.floor(h / 64) + 1)) * 64) new_w = tf.where(tf.equal(tf.mod(w, 64), 0), w, (tf.to_int32(tf.floor(w / 64) + 1)) * 64) batch_img0 = tf.image.resize_images(b_img0, [new_h, new_w], method=1, align_corners=True)