Exemple #1
0
def salScore2votes(salImSeq, sp):
    """
    Convert saliency score to votes
    Input:
        salImSeq: (n, h, w) where n > 1: float. FG>0, BG=0. score in [0,1].
        sp: (n,h,w): 0-indexed regions, #regions <= numsp
    Output:
        votes: (k,) where k < numsp*n
    """
    n, h, w = salImSeq.shape
    numsp = np.max(sp) + 1
    votes = np.zeros((numsp * n, ), dtype=np.float)
    startInd = 0
    for i in range(n):
        sp1 = sp[i].reshape(-1)
        val1 = salImSeq[i].reshape(-1)
        sizeOut = np.max(sp1) + 1
        # assign average score of pixels to a superpixel
        sumScore = utils.my_accumarray(sp1, val1, sizeOut, 'plus')
        count = utils.my_accumarray(sp1, np.ones(sp1.shape), sizeOut, 'plus')
        votes[startInd:startInd + sizeOut] = sumScore / count
        startInd += sizeOut
    votes = votes[:startInd]

    return votes
Exemple #2
0
def remove_low_energy_blobs(maskSeq,
                            binTh,
                            relSize=0.6,
                            relEnergy=None,
                            target=None):
    """
    Input:
        maskSeq: (n, h, w) where n > 1: float. FG>0, BG=0. Not thresholded.
        binTh: binary threshold for maskSeq for finding blobs: [0, max(maskSeq)]
        relSize: [0,1]: size of FG blobs to keep compared to largest one
                        Only used if relEnergy is None.
        relEnergy: Ideally it should be <= binTh. Kill blobs whose:
                    (total energy <= relEnergy * numPixlesInBlob)
                   If relEnergy is given, relSize is not used.
        target: value to which set the low energy blobs to.
                Default: binTh-epsilon. Must be less than binTh.
    Output:
        maskSeq: (n, h, w) where n > 1: float. FG>0, BG=0. Not thresholded. It
                 has same values as input, except the low energy blobs where its
                 value is target.
    """
    sTime = time.time()
    if target is None:
        target = binTh - 1e-5
    for i in range(maskSeq.shape[0]):
        mask = (maskSeq[i] > binTh).astype(np.uint8)
        if np.sum(mask) == 0:
            continue
        sp1, num = ndimage.label(mask)  # 0 in sp1 is same as 0 in mask i.e. BG
        count = utils.my_accumarray(sp1, np.ones(sp1.shape), num + 1, 'plus')
        if relEnergy is not None:
            sumScore = utils.my_accumarray(sp1, maskSeq[i], num + 1, 'plus')
            destroyFG = sumScore[1:] < relEnergy * count[1:]
        else:
            sizeLargestBlob = np.max(count[1:])
            destroyFG = count[1:] < relSize * sizeLargestBlob
        destroyFG = np.concatenate(([False], destroyFG))
        maskSeq[i][destroyFG[sp1]] = target
    eTime = time.time()
    print('Removing low energy blobs finished: %.2f s' % (eTime - sTime))
    return maskSeq
Exemple #3
0
def get_region_boxes(sp):
    """
    Get bounding boxes for each superpixel image
    Input: sp: (h,w): 0-indexed regions, #regions <= numsp
    Output: boxes: (numsp, 4) : (xmin, ymin, xmax, ymax)
    """
    x = np.arange(0, sp.shape[1])
    y = np.arange(0, sp.shape[0])
    xv, yv = np.meshgrid(x, y)
    sizeOut = np.max(sp) + 1
    sp1 = sp.reshape(-1)
    xv = xv.reshape(-1)
    yv = yv.reshape(-1)
    spxmin = utils.my_accumarray(sp1, xv, sizeOut, 'min')
    spymin = utils.my_accumarray(sp1, yv, sizeOut, 'min')
    spxmax = utils.my_accumarray(sp1, xv, sizeOut, 'max')
    spymax = utils.my_accumarray(sp1, yv, sizeOut, 'max')

    boxes = np.hstack((spxmin.reshape(-1, 1), spymin.reshape(-1, 1),
                       spxmax.reshape(-1, 1), spymax.reshape(-1, 1)))
    return boxes