# Params max_iter = 50 lambda_ = 3. x_adv, r, pred_label, fool_label, loops = sparsefool(im, net, lb, ub, lambda_, max_iter, device) ##################### # Visualize results # ##################### labels = open(os.path.join('synset_words.txt'), 'r').read().split('\n') str_label_pred = get_label(labels[np.int(pred_label)].split(',')[0]) str_label_fool = get_label(labels[np.int(fool_label)].split(',')[0]) fig, axes = plt.subplots(1, 3) axes[0].set_title(str_label_pred) axes[1].set_title("%s pixels" % repr(nnz_pixels(r.cpu().numpy().squeeze()))) axes[2].set_title(str_label_fool) axes[0].imshow(im_orig) axes[1].imshow(inv_tf_pert(r.cpu().numpy().squeeze()), cmap='gray') axes[2].imshow(inv_tf(x_adv.cpu().numpy().squeeze(), mean, std)) axes[0].axis('off') axes[1].axis('off') axes[2].axis('off') plt.show() plt.close(fig)
def sparsefool_generate(input_path, output_path, num=100, delta=100, max_iter=25, fixed_iter=False): # Check for cuda devices (GPU) device = 'cuda' if torch.cuda.is_available() else 'cpu' # Load a pretrained model # Here we use resnet18 as target model net = torch.load('./Model_trained/animals10_resnet18.pth', map_location=torch.device('cpu')) net = net.to(device) net.eval() listing = os.listdir(input_path) existed_file_list = os.listdir(output_path) print(existed_file_list) cnt = 0 cnt_correct = 0 num_pixel_modified = [] for image_name in listing: print(image_name) # Generate output file name and path for later the image saving if image_name[-3:] == 'jpg' or image_name[-3:] == 'bmp': output_file_path = (output_path + str(delta) + '_' + image_name)[:-3] + 'bmp' output_file_path_diff = (output_path + 'diff_' + str(delta) + '_' + image_name)[:-3] + 'bmp' output_file_name = str(delta) + '_' + image_name[:-3] + 'bmp' elif image_name[-4:] == 'jpeg': output_file_path = (output_path + str(delta) + '_' + image_name)[:-4] + 'bmp' output_file_path_diff = (output_path + 'diff_' + str(delta) + '_' + image_name)[:-4] + 'bmp' output_file_name = str(delta) + '_' + image_name[:-4] + 'bmp' else: print('Only .jpeg of .jpg is supported') continue # Check if an image is already processed # This condition permits the scripts to stop half way and continue after if output_file_name in existed_file_list: print('File already processed') continue # Count of images process, used to calculate accuracy after attack cnt += 1 # Load Image and Resize im_orig = Image.open(input_path + '/' + image_name) im_sz = 224 im_orig = transforms.Compose([transforms.Resize( (im_sz, im_sz))])(im_orig) # Bounds for Validity and Perceptibility lb, ub = valid_bounds(im_orig, delta) # Transform image, ub and lb to PyTorch tensors for calculation im = transforms.Compose([transforms.ToTensor()])(im_orig) lb = transforms.Compose([transforms.ToTensor()])(lb) ub = transforms.Compose([transforms.ToTensor()])(ub) im = im[None, :, :, :].to(device) lb = lb[None, :, :, :].to(device) ub = ub[None, :, :, :].to(device) # Params lambda_ = 3 # Execute SparseFool x_adv, r, pred_label, fool_label, loops = sparsefool( im, net, lb, ub, lambda_, max_iter, device=device, fixed_iter=fixed_iter) # count the number of pixel modified and store in an array num_pixel_modified.append(nnz_pixels(r.cpu().numpy().squeeze())) # Save image generated and the noise save_image(x_adv, output_file_path) save_image(r, output_file_path_diff) # Print result if fool_label == int(image_name[0]): cnt_correct += 1 print('True labels: ', image_name[0]) print('After adding noise, classified as: ', fool_label) print('Num_pixel_modified: ', num_pixel_modified[-1]) print('\n') # Summarize results for all images processed if len(num_pixel_modified) > 0: print("Accuracy of Network after attack: " + str(100 * cnt_correct / num) + " %") print('Average number of pixel modified : ', sum(num_pixel_modified) / len(num_pixel_modified)) else: print('No images is processed.')
# Params max_iter = 50 lambda_ = 3. x_adv, r, pred_label, fool_label, loops = sparsefool( im, net, lb, ub, lambda_, max_iter) # Visualize results str_label_pred = get_label(labels[np.int(pred_label)].split(',')[0]) str_label_fool = get_label(labels[np.int(fool_label)].split(',')[0]) axes[i + 1].imshow(inv_tf(x_adv.cpu().numpy().squeeze(), mean, std)) axes[i + 1].set_title("$\delta$: %s" % repr(delta_l[i])) axes[i + 1].set_xlabel( "%s (%1.2f%% pxls)" % (str_label_fool, 100. * nnz_pixels(r.cpu().numpy().squeeze()) / (im_sz * im_sz))) axes[i + 1].xaxis.set_ticks_position('none') axes[i + 1].yaxis.set_ticks_position('none') axes[i + 1].set_xticklabels([]) axes[i + 1].set_yticklabels([]) axes[0].imshow(im_orig) axes[0].set_title("Original") axes[0].set_xlabel(str_label_pred) axes[0].xaxis.set_ticks_position('none') axes[0].yaxis.set_ticks_position('none') axes[0].set_xticklabels([]) axes[0].set_yticklabels([]) plt.show()