Exemple #1
0
def prediction(odom):
    """
    Predict the particle's new location based on Odometry information and particle's location.
    :param odom: Odometry information retrieved by odometer sensors.
    :return: None
    """
    print("entered prediction", len(particles))
    odom_delta = odom_to_pose(odom)
    delta = ekf.get_odom_delta(odom_delta)
    if delta is not None:
        tuple_odom = delta.T.tolist()[0]
    else:
        tuple_odom = 0, 0, 0
    delta_x = tuple_odom[0]
    delta_y = tuple_odom[1]
    delta_theta = tuple_odom[2]
    trv_dist = math.sqrt((delta_x ** 2) + (delta_y ** 2))

    particle_count = 0
    mean = 0
    trv_sigma = 0.05
    orient_sigma = (0.5 / 360) * math.pi * 2
    # Add noises to odometry info and use the result to update every particle.
    for each_particle in particles:
        each_particle.predict_update(trv_dist, delta_theta, mean, trv_sigma, orient_sigma)
        # After updating, if particle's new location is "in the wall", it's definitely a "bad" particle.
        if each_particle.loc_check() is False:
            each_particle.probability = 0
        particle_count += 1
Exemple #2
0
def odom_callback(odom):
    # by definition, if there is laser and/or QR data, it was there
    # before this odometry came in, so process that first.
    if ekf.lastlaser is not None and ekf.uselaser:
        ekf.update_pos(ekf.lastlaser)
        ekf.lastlaser = None
        ekf.uselaser = False
        pose = ekf.get_pose()
        rospy.loginfo("After laser pose is (%6.3f, %6.3f, %6.3f) cov %s",
                      pose.x, pose.y, pose.theta, pose.cov)
    if ekf.lastqr is not None and ekf.useqr:
        ekf.update_pos(ekf.lastqr, True)
        ekf.lastqr = None
        ekf.useqr = False
        pose = ekf.get_pose()
        rospy.loginfo("After QR pose is (%6.3f, %6.3f, %6.3f) cov %s", pose.x,
                      pose.y, pose.theta, pose.cov)
    opose = odom_to_pose(odom)
    rospy.loginfo("Odom is (%6.3f, %6.3f, %6.3f)", opose.x, opose.y,
                  opose.theta)
    ekf.predict(opose)
    #print ekf.get_pose()
    pose = ekf.get_pose()
    rospy.loginfo("After odom pose is (%6.3f, %6.3f, %6.3f) cov %s", pose.x,
                  pose.y, pose.theta, pose.cov)
    pose_pub.publish(ekf.get_pose())
Exemple #3
0
def odom_callback(odom):

    #print "ODOMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM"
    # print odom.pose
    # odom = linear twist, angular twist and convariance
    # between xl, yl, zl, xa, ya, za = 36 values

    # converting odom topic to pose value
    ekf.predict(odom_to_pose(odom))
def odom_callback(odom):

    # print "ODOMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM"
    # print odom.pose
    # odom = linear twist, angular twist and convariance
    # between xl, yl, zl, xa, ya, za = 36 values

    # converting odom topic to pose value
    ekf.predict(odom_to_pose(odom))
def odom_callback(odometry):
    """
    Handles the odometry messages. Once receiving an odometry, calculates the current pose of robot.
    :param odometry: The odometry message.
    :return: None
    """
    global ekf, current_pose, smart_slam, traditional_slam

    odom_pose = odom_to_pose(odometry)
    ekf.predict(odom_pose)
    # current_pose is set as the latest known pose of robot.
    current_pose = ekf.get_pose()
    # robot_poses records the trajectory of the robot.
    last_pose = current_pose -
    robot_poses.append(current_pose)
    last_pose =

    smart_slam.predict()
def odom_callback(odom):
    # by definition, if there is laser and/or QR data, it was there
    # before this odometry came in, so process that first.
    if ekf.lastlaser is not None and ekf.uselaser:
        ekf.update_pos(ekf.lastlaser)
        ekf.lastlaser = None
        ekf.uselaser = False
        pose = ekf.get_pose()
        rospy.loginfo("After laser pose is (%6.3f, %6.3f, %6.3f) cov %s",pose.x, pose.y,pose.theta,pose.cov) 
    if ekf.lastqr is not None and ekf.useqr:
        ekf.update_pos(ekf.lastqr,True)
        ekf.lastqr = None
        ekf.useqr = False
        pose = ekf.get_pose()
        rospy.loginfo("After QR pose is (%6.3f, %6.3f, %6.3f) cov %s",pose.x, pose.y,pose.theta,pose.cov) 
    opose = odom_to_pose(odom)
    rospy.loginfo("Odom is (%6.3f, %6.3f, %6.3f)",opose.x, opose.y,opose.theta) 
    ekf.predict(opose)
    #print ekf.get_pose()
    pose = ekf.get_pose()
    rospy.loginfo("After odom pose is (%6.3f, %6.3f, %6.3f) cov %s",pose.x, pose.y,pose.theta,pose.cov)
    pose_pub.publish(ekf.get_pose())
Exemple #7
0
def odom_comb_callback(odom):
    ocpose = odom_to_pose(odom)
    rospy.loginfo("Odom combined is (%6.3f, %6.3f, %6.3f)", ocpose.x, ocpose.y,
                  ocpose.theta)
def odom_comb_callback(odom):
    ocpose = odom_to_pose(odom)
    rospy.loginfo("Odom combined is (%6.3f, %6.3f, %6.3f)",ocpose.x, ocpose.y,ocpose.theta) 
Exemple #9
0
def odom_callback(odom):
    ekf.predict(odom_to_pose(odom))
    pose_pub.publish(ekf.get_pose())
def odom_callback(odom):
    ekf.predict(odom_to_pose(odom))
    pose_pub.publish(ekf.get_pose())