input = F.relu(torch.add(input, -minimum)) input = F.relu(torch.add(torch.neg(input), maximum-minimum)) input = torch.add(torch.neg(input), maximum) return input def quant(input): input = torch.round(input / (2 ** (-args.aprec))) * (2 ** (-args.aprec)) return input # Load checkpoint. if args.mode == 0: print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/'+args.network) net = checkpoint['net'] params = utils.paramsGet(net) tmp = (params.data != 0).sum() print(tmp.item()/params.size()[0]) elif args.mode == 1: checkpoint = torch.load('./checkpoint/ckpt_20190802_half_clean_B3.t0') ckpt = torch.load('./checkpoint/ckpt_20190802_half_clean_B2.t0') net = checkpoint['net'] net2 = ckpt['net'] if args.resume: print('==> Resuming from checkpoint..') best_acc = checkpoint['acc'] else: best_acc = 0 elif args.mode == 2:
def evalMetric(net, net_origin): params_net = utils.paramsGet(net) params_net_origin = utils.paramsGet(net_origin) print(params_net.size()) print(params_net_origin.size())