Exemple #1
0
def experiment(exp_name, device, eval_range='all', plot=True):
    config, _, _, _ = load_config(exp_name)
    net, loss_fn = build_model(config, device, train=False)
    state_dict = torch.load(get_model_name(config), map_location=device)
    if config['mGPUs']:
        net.module.load_state_dict(state_dict)
    else:
        net.load_state_dict(state_dict)
    train_loader, val_loader = get_data_loader(
        config['batch_size'],
        config['use_npy'],
        geometry=config['geometry'],
        frame_range=config['frame_range'])

    #Train Set
    train_metrics, train_precisions, train_recalls, _ = eval_batch(
        config, net, loss_fn, train_loader, device, eval_range)
    print("Training mAP", train_metrics['AP'])
    fig_name = "PRCurve_train_" + config['name']
    legend = "AP={:.1%} @IOU=0.5".format(train_metrics['AP'])
    plot_pr_curve(train_precisions, train_recalls, legend, name=fig_name)

    # Val Set
    val_metrics, val_precisions, val_recalls, _ = eval_batch(
        config, net, loss_fn, val_loader, device, eval_range)

    print("Validation mAP", val_metrics['AP'])
    print("Net Fwd Pass Time on average {:.4f}s".format(
        val_metrics['Forward Pass Time']))
    print("Nms Time on average {:.4f}s".format(
        val_metrics['Postprocess Time']))

    fig_name = "PRCurve_val_" + config['name']
    legend = "AP={:.1%} @IOU=0.5".format(val_metrics['AP'])
    plot_pr_curve(val_precisions, val_recalls, legend, name=fig_name)
Exemple #2
0
def test():
    test_data = get_test_data()
    x = test_data[0]
    y = test_data[1]

    # Recreate the model.
    model = DeepSEA()
    model.compile(optimizer=tf.keras.optimizers.SGD(momentum=0.9),
                  loss=tf.keras.losses.BinaryCrossentropy())
    model.build(input_shape=(None, 1000, 4))
    model.summary()

    # Load the weights of the old model. (The weights content the weights of model and status of optimizer.)
    # Because the tensorflow delay the creation of variables in model and optimizer, so the optimizer status will
    # be restored when the model is trained first. like: model.train_on_batch(x[0:1], y[0:1])
    model.load_weights('./result/model/ckpt')
    # model.load_weights('./result/model/bestmodel.h5')

    result = model.predict(x)  # shape = (455024, 919)

    np.savez('./result/test_result.npz', result=result, label=y)

    result = np.mean((result[0:227512], result[227512:]), axis=0)
    result_shape = np.shape(result)
    y = y[0:227512]

    fpr_list, tpr_list, auroc_list = [], [], []
    precision_list, recall_list, aupr_list = [], [], []
    for i in tqdm(range(result_shape[1]), ascii=True):
        fpr_temp, tpr_temp, auroc_temp = calculate_auroc(result[:, i], y[:, i])
        precision_temp, recall_temp, aupr_temp = calculate_aupr(
            result[:, i], y[:, i])

        fpr_list.append(fpr_temp)
        tpr_list.append(tpr_temp)
        precision_list.append(precision_temp)
        recall_list.append(recall_temp)
        auroc_list.append(auroc_temp)
        aupr_list.append(aupr_temp)

    plot_roc_curve(fpr_list, tpr_list, './result/')
    plot_pr_curve(precision_list, recall_list, './result/')

    header = np.array([['auroc', 'aupr']])
    content = np.stack((auroc_list, aupr_list), axis=1)
    content = np.concatenate((header, content), axis=0)
    write2csv(content, './result/result.csv')
    write2txt(content, './result/result.txt')
    avg_auroc = np.nanmean(auroc_list)
    avg_aupr = np.nanmean(aupr_list)
    print('AVG-AUROC:{:.3f}, AVG-AUPR:{:.3f}.\n'.format(avg_auroc, avg_aupr))
def test():
    dataset_test = get_test_data(64)

    model = DanQ()
    loss_object = keras.losses.BinaryCrossentropy()
    optimizer = keras.optimizers.Adam()
    trainer = Trainer(model=model,
                      loss_object=loss_object,
                      optimizer=optimizer,
                      experiment_dir='./result/DanQ')

    result, label = trainer.test(dataset_test,
                                 test_steps=int(np.ceil(455024 / 64)),
                                 dis_show_bar=True)

    result = np.mean((result[0:227512], result[227512:]), axis=0)
    result_shape = np.shape(result)
    label = label[0:227512]

    fpr_list, tpr_list, auroc_list = [], [], []
    precision_list, recall_list, aupr_list = [], [], []
    for i in tqdm(range(result_shape[1]), ascii=True):
        fpr_temp, tpr_temp, auroc_temp = calculate_auroc(
            result[:, i], label[:, i])
        precision_temp, recall_temp, aupr_temp = calculate_aupr(
            result[:, i], label[:, i])

        fpr_list.append(fpr_temp)
        tpr_list.append(tpr_temp)
        precision_list.append(precision_temp)
        recall_list.append(recall_temp)
        auroc_list.append(auroc_temp)
        aupr_list.append(aupr_temp)

    plot_roc_curve(fpr_list, tpr_list, './result/DanQ/')
    plot_pr_curve(precision_list, recall_list, './result/DanQ/')

    header = np.array([['auroc', 'aupr']])
    content = np.stack((auroc_list, aupr_list), axis=1)
    content = np.concatenate((header, content), axis=0)
    write2csv(content, './result/DanQ/result.csv')
    write2txt(content, './result/DanQ/result.txt')
    avg_auroc = np.nanmean(auroc_list)
    avg_aupr = np.nanmean(aupr_list)
    print('AVG-AUROC:{:.3f}, AVG-AUPR:{:.3f}.\n'.format(avg_auroc, avg_aupr))
Exemple #4
0
def run_main(args):

    # Define parameters
    epochs = args.epochs
    dim_au_out = args.bottleneck  #8, 16, 32, 64, 128, 256,512
    dim_dnn_in = dim_au_out
    dim_dnn_out = 1
    select_drug = args.drug
    na = args.missing_value
    data_path = args.data_path
    label_path = args.label_path
    test_size = args.test_size
    valid_size = args.valid_size
    g_disperson = args.var_genes_disp
    model_path = args.source_model_path
    encoder_path = args.encoder_path
    log_path = args.logging_file
    batch_size = args.batch_size
    encoder_hdims = args.encoder_h_dims.split(",")
    preditor_hdims = args.predictor_h_dims.split(",")
    reduce_model = args.dimreduce
    prediction = args.predition
    sampling = args.sampling
    PCA_dim = args.PCA_dim

    encoder_hdims = list(map(int, encoder_hdims))
    preditor_hdims = list(map(int, preditor_hdims))
    load_model = bool(args.load_source_model)

    preditor_path = model_path + reduce_model + args.predictor + prediction + select_drug + '.pkl'

    # Read data
    data_r = pd.read_csv(data_path, index_col=0)
    label_r = pd.read_csv(label_path, index_col=0)
    label_r = label_r.fillna(na)

    now = time.strftime("%Y-%m-%d-%H-%M-%S")

    ut.save_arguments(args, now)

    # Initialize logging and std out
    out_path = log_path + now + ".err"
    log_path = log_path + now + ".log"

    out = open(out_path, "w")
    sys.stderr = out

    logging.basicConfig(
        level=logging.INFO,  #控制台打印的日志级别
        filename=log_path,
        filemode='a',  ##模式,有w和a,w就是写模式,每次都会重新写日志,覆盖之前的日志
        #a是追加模式,默认如果不写的话,就是追加模式
        format=
        '%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
        #日志格式
    )
    logging.getLogger('matplotlib.font_manager').disabled = True

    logging.info(args)

    # data = data_r

    # Filter out na values
    selected_idx = label_r.loc[:, select_drug] != na

    if (g_disperson != None):
        hvg, adata = ut.highly_variable_genes(data_r, min_disp=g_disperson)
        # Rename columns if duplication exist
        data_r.columns = adata.var_names
        # Extract hvgs
        data = data_r.loc[selected_idx, hvg]
    else:
        data = data_r.loc[selected_idx, :]

    # Do PCA if PCA_dim!=0
    if PCA_dim != 0:
        data = PCA(n_components=PCA_dim).fit_transform(data)
    else:
        data = data

    # Extract labels
    label = label_r.loc[selected_idx, select_drug]

    # Scaling data
    mmscaler = preprocessing.MinMaxScaler()
    lbscaler = preprocessing.MinMaxScaler()

    data = mmscaler.fit_transform(data)
    label = label.values.reshape(-1, 1)

    if prediction == "regression":
        label = lbscaler.fit_transform(label)
        dim_model_out = 1
    else:
        le = LabelEncoder()
        label = le.fit_transform(label)
        dim_model_out = 2

    #label = label.values.reshape(-1,1)

    logging.info(np.std(data))
    logging.info(np.mean(data))

    # Split traning valid test set
    X_train_all, X_test, Y_train_all, Y_test = train_test_split(
        data, label, test_size=test_size, random_state=42)
    X_train, X_valid, Y_train, Y_valid = train_test_split(X_train_all,
                                                          Y_train_all,
                                                          test_size=valid_size,
                                                          random_state=42)
    # sampling method
    if sampling == None:
        X_train, Y_train = sam.nosampling(X_train, Y_train)
        logging.info("nosampling")
    elif sampling == "upsampling":
        X_train, Y_train = sam.upsampling(X_train, Y_train)
        logging.info("upsampling")
    elif sampling == "downsampling":
        X_train, Y_train = sam.downsampling(X_train, Y_train)
        logging.info("downsampling")
    elif sampling == "SMOTE":
        X_train, Y_train = sam.SMOTEsampling(X_train, Y_train)
        logging.info("SMOTE")
    else:
        logging.info("not a legal sampling method")

    logging.info(data.shape)
    logging.info(label.shape)
    #logging.info(X_train.shape, Y_train.shape)
    #logging.info(X_test.shape, Y_test.shape)
    logging.info(X_train.max())
    logging.info(X_train.min())

    # Select the Training device
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    # Assuming that we are on a CUDA machine, this should print a CUDA device:
    logging.info(device)
    torch.cuda.set_device(device)

    # Construct datasets and data loaders
    X_trainTensor = torch.FloatTensor(X_train).to(device)
    X_validTensor = torch.FloatTensor(X_valid).to(device)
    X_testTensor = torch.FloatTensor(X_test).to(device)
    X_allTensor = torch.FloatTensor(data).to(device)

    if prediction == "regression":
        Y_trainTensor = torch.FloatTensor(Y_train).to(device)
        Y_trainallTensor = torch.FloatTensor(Y_train_all).to(device)
        Y_validTensor = torch.FloatTensor(Y_valid).to(device)
    else:
        Y_trainTensor = torch.LongTensor(Y_train).to(device)
        Y_trainallTensor = torch.LongTensor(Y_train_all).to(device)
        Y_validTensor = torch.LongTensor(Y_valid).to(device)

    train_dataset = TensorDataset(X_trainTensor, X_trainTensor)
    valid_dataset = TensorDataset(X_validTensor, X_validTensor)
    test_dataset = TensorDataset(X_testTensor, X_testTensor)
    all_dataset = TensorDataset(X_allTensor, X_allTensor)

    X_trainDataLoader = DataLoader(dataset=train_dataset,
                                   batch_size=batch_size,
                                   shuffle=True)
    X_validDataLoader = DataLoader(dataset=valid_dataset,
                                   batch_size=batch_size,
                                   shuffle=True)
    X_allDataLoader = DataLoader(dataset=all_dataset,
                                 batch_size=batch_size,
                                 shuffle=True)

    # construct TensorDataset
    trainreducedDataset = TensorDataset(X_trainTensor, Y_trainTensor)
    validreducedDataset = TensorDataset(X_validTensor, Y_validTensor)

    trainDataLoader_p = DataLoader(dataset=trainreducedDataset,
                                   batch_size=batch_size,
                                   shuffle=True)
    validDataLoader_p = DataLoader(dataset=validreducedDataset,
                                   batch_size=batch_size,
                                   shuffle=True)

    dataloaders_train = {'train': trainDataLoader_p, 'val': validDataLoader_p}

    if (bool(args.pretrain) != False):
        dataloaders_pretrain = {
            'train': X_trainDataLoader,
            'val': X_validDataLoader
        }
        if reduce_model == "VAE":
            encoder = VAEBase(input_dim=data.shape[1],
                              latent_dim=dim_au_out,
                              h_dims=encoder_hdims)
        else:
            encoder = AEBase(input_dim=data.shape[1],
                             latent_dim=dim_au_out,
                             h_dims=encoder_hdims)

        if torch.cuda.is_available():
            encoder.cuda()

        logging.info(encoder)
        encoder.to(device)

        optimizer_e = optim.Adam(encoder.parameters(), lr=1e-2)
        loss_function_e = nn.MSELoss()
        exp_lr_scheduler_e = lr_scheduler.ReduceLROnPlateau(optimizer_e)

        if reduce_model == "AE":
            encoder, loss_report_en = t.train_AE_model(
                net=encoder,
                data_loaders=dataloaders_pretrain,
                optimizer=optimizer_e,
                loss_function=loss_function_e,
                n_epochs=epochs,
                scheduler=exp_lr_scheduler_e,
                save_path=encoder_path)
        elif reduce_model == "VAE":
            encoder, loss_report_en = t.train_VAE_model(
                net=encoder,
                data_loaders=dataloaders_pretrain,
                optimizer=optimizer_e,
                n_epochs=epochs,
                scheduler=exp_lr_scheduler_e,
                save_path=encoder_path)

        logging.info("Pretrained finished")

    # Train model of predictor

    if args.predictor == "DNN":
        if reduce_model == "AE":
            model = PretrainedPredictor(input_dim=X_train.shape[1],
                                        latent_dim=dim_au_out,
                                        h_dims=encoder_hdims,
                                        hidden_dims_predictor=preditor_hdims,
                                        output_dim=dim_model_out,
                                        pretrained_weights=encoder_path,
                                        freezed=bool(args.freeze_pretrain))
        elif reduce_model == "VAE":
            model = PretrainedVAEPredictor(
                input_dim=X_train.shape[1],
                latent_dim=dim_au_out,
                h_dims=encoder_hdims,
                hidden_dims_predictor=preditor_hdims,
                output_dim=dim_model_out,
                pretrained_weights=encoder_path,
                freezed=bool(args.freeze_pretrain),
                z_reparam=bool(args.VAErepram))

    elif args.predictor == "GCN":

        if reduce_model == "VAE":
            gcn_encoder = VAEBase(input_dim=data.shape[1],
                                  latent_dim=dim_au_out,
                                  h_dims=encoder_hdims)
        else:
            gcn_encoder = AEBase(input_dim=data.shape[1],
                                 latent_dim=dim_au_out,
                                 h_dims=encoder_hdims)

        gcn_encoder.load_state_dict(torch.load(args.GCNreduce_path))
        gcn_encoder.to(device)

        train_embeddings = gcn_encoder.encode(X_trainTensor)
        zOut_tr = train_embeddings.cpu().detach().numpy()
        valid_embeddings = gcn_encoder.encode(X_validTensor)
        zOut_va = valid_embeddings.cpu().detach().numpy()
        test_embeddings = gcn_encoder.encode(X_testTensor)
        zOut_te = test_embeddings.cpu().detach().numpy()

        adj_tr, edgeList_tr = g.generateAdj(
            zOut_tr,
            graphType='KNNgraphStatsSingleThread',
            para='euclidean' + ':' + str('10'),
            adjTag=True)
        adj_va, edgeList_va = g.generateAdj(
            zOut_va,
            graphType='KNNgraphStatsSingleThread',
            para='euclidean' + ':' + str('10'),
            adjTag=True)
        adj_te, edgeList_te = g.generateAdj(
            zOut_te,
            graphType='KNNgraphStatsSingleThread',
            para='euclidean' + ':' + str('10'),
            adjTag=True)

        Adj_trainTensor = preprocess_graph(adj_tr)
        Adj_validTensor = preprocess_graph(adj_va)
        Adj_testTensor = preprocess_graph(adj_te)

        Z_trainTensor = torch.FloatTensor(zOut_tr).to(device)
        Z_validTensor = torch.FloatTensor(zOut_va).to(device)
        Z_testTensor = torch.FloatTensor(zOut_te).to(device)

        if (args.binarizied == 0):
            zDiscret_tr = zOut_tr > np.mean(zOut_tr, axis=0)
            zDiscret_tr = 1.0 * zDiscret_tr
            zDiscret_va = zOut_va > np.mean(zOut_va, axis=0)
            zDiscret_va = 1.0 * zDiscret_va
            zDiscret_te = zOut_te > np.mean(zOut_te, axis=0)
            zDiscret_te = 1.0 * zDiscret_te

            Z_trainTensor = torch.FloatTensor(zDiscret_tr).to(device)
            Z_validTensor = torch.FloatTensor(zDiscret_va).to(device)
            Z_testTensor = torch.FloatTensor(zDiscret_te).to(device)

        ZTensors_train = {'train': Z_trainTensor, 'val': Z_validTensor}
        XTensors_train = {'train': X_trainTensor, 'val': X_validTensor}

        YTensors_train = {'train': Y_trainTensor, 'val': Y_validTensor}
        AdjTensors_train = {'train': Adj_trainTensor, 'val': Adj_validTensor}

        if (args.GCNfeature == "x"):
            dim_GCNin = X_allTensor.shape[1]
            GCN_trainTensors = XTensors_train
            GCN_testTensor = X_testTensor
        else:
            dim_GCNin = Z_testTensor.shape[1]
            GCN_trainTensors = ZTensors_train
            GCN_testTensor = Z_testTensor

        model = GCNPredictor(input_feat_dim=dim_GCNin,
                             hidden_dim1=encoder_hdims[0],
                             hidden_dim2=dim_au_out,
                             dropout=0.5,
                             hidden_dims_predictor=preditor_hdims,
                             output_dim=dim_model_out,
                             pretrained_weights=encoder_path,
                             freezed=bool(args.freeze_pretrain))

        # model2 = GAEBase(input_dim=X_train_all.shape[1], latent_dim=128,h_dims=[512])
        # model2.to(device)
        # test = model2((X_trainTensor,Adj_trainTensor))

    logging.info(model)
    if torch.cuda.is_available():
        model.cuda()
    model.to(device)

    # Define optimizer
    optimizer = optim.Adam(model.parameters(), lr=1e-2)

    if prediction == "regression":
        loss_function = nn.MSELoss()
    else:
        loss_function = nn.CrossEntropyLoss()

    exp_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer)

    if args.predictor == "GCN":
        model, report = t.train_GCNpreditor_model(model=model,
                                                  z=GCN_trainTensors,
                                                  y=YTensors_train,
                                                  adj=AdjTensors_train,
                                                  optimizer=optimizer,
                                                  loss_function=loss_function,
                                                  n_epochs=epochs,
                                                  scheduler=exp_lr_scheduler,
                                                  save_path=preditor_path)

    else:
        model, report = t.train_predictor_model(model,
                                                dataloaders_train,
                                                optimizer,
                                                loss_function,
                                                epochs,
                                                exp_lr_scheduler,
                                                load=load_model,
                                                save_path=preditor_path)
    if args.predictor != 'GCN':
        dl_result = model(X_testTensor).detach().cpu().numpy()
    else:
        dl_result = model(GCN_testTensor,
                          Adj_testTensor).detach().cpu().numpy()

    #torch.save(model.feature_extractor.state_dict(), preditor_path+"encoder.pkl")

    logging.info('Performances: R/Pearson/Mse/')

    if prediction == "regression":
        logging.info(r2_score(dl_result, Y_test))
        logging.info(pearsonr(dl_result.flatten(), Y_test.flatten()))
        logging.info(mean_squared_error(dl_result, Y_test))
    else:
        lb_results = np.argmax(dl_result, axis=1)
        #pb_results = np.max(dl_result,axis=1)
        pb_results = dl_result[:, 1]

        report_dict = classification_report(Y_test,
                                            lb_results,
                                            output_dict=True)
        report_df = pd.DataFrame(report_dict).T
        ap_score = average_precision_score(Y_test, pb_results)
        auroc_score = roc_auc_score(Y_test, pb_results)

        report_df['auroc_score'] = auroc_score
        report_df['ap_score'] = ap_score

        report_df.to_csv("saved/logs/" + reduce_model + args.predictor +
                         prediction + select_drug + now + '_report.csv')

        logging.info(classification_report(Y_test, lb_results))
        logging.info(average_precision_score(Y_test, pb_results))
        logging.info(roc_auc_score(Y_test, pb_results))

        model = DummyClassifier(strategy='stratified')
        model.fit(X_train, Y_train)
        yhat = model.predict_proba(X_test)
        naive_probs = yhat[:, 1]

        ut.plot_roc_curve(Y_test,
                          naive_probs,
                          pb_results,
                          title=str(roc_auc_score(Y_test, pb_results)),
                          path="saved/figures/" + reduce_model +
                          args.predictor + prediction + select_drug + now +
                          '_roc.pdf')
        ut.plot_pr_curve(Y_test,
                         pb_results,
                         title=average_precision_score(Y_test, pb_results),
                         path="saved/figures/" + reduce_model +
                         args.predictor + prediction + select_drug + now +
                         '_prc.pdf')
Exemple #5
0
    print 'loading data...'
    cc_dataset = pk.load(open('datasets/cc_web_video.pickle', 'rb'))
    cc_features = np.load(args['evaluation_set'])

    model = DNN(cc_features.shape[1],
                None,
                args['model_path'],
                load_model=True,
                trainable=False)
    cc_embeddings = model.embeddings(cc_features)
    print 'Evaluation set file: ', args['evaluation_set']
    print 'Path to DML model: ', args['model_path']
    print 'Positive labels: ', args['positive_labels']

    print '\nEvaluation Results'
    print '=================='
    similarities = calculate_similarities(cc_dataset['queries'], cc_embeddings)
    mAP, pr_curve = evaluate(cc_dataset['ground_truth'],
                             similarities,
                             positive_labels=args['positive_labels'],
                             all_videos=False)
    print 'CC_WEB_VIDEO mAP: ', mAP
    plot_pr_curve(pr_curve, 'CC_WEB_VIDEO')

    mAP, pr_curve = evaluate(cc_dataset['ground_truth'],
                             similarities,
                             positive_labels=args['positive_labels'],
                             all_videos=True)
    print 'CC_WEB_VIDEO* mAP: ', mAP
    plot_pr_curve(pr_curve, 'CC_WEB_VIDEO*')
Exemple #6
0
    print('\nEvaluation Results')
    print('==================')
    similarities = calculate_similarities(cc_dataset['queries'], cc_embeddings)
    baseline_similarities = calculate_similarities(cc_dataset['queries'],
                                                   cc_features)
    mAP_dml, pr_curve_dml = evaluate(cc_dataset['ground_truth'],
                                     similarities,
                                     positive_labels=args['positive_labels'],
                                     all_videos=False)
    mAP_base, pr_curve_base = evaluate(cc_dataset['ground_truth'],
                                       baseline_similarities,
                                       positive_labels=args['positive_labels'],
                                       all_videos=False)
    print('CC_WEB_VIDEO')
    print('baseline mAP: ', mAP_base)
    print('DML mAP: ', mAP_dml)
    plot_pr_curve(pr_curve_dml, pr_curve_base, 'CC_WEB_VIDEO')

    mAP_dml, pr_curve_dml = evaluate(cc_dataset['ground_truth'],
                                     similarities,
                                     positive_labels=args['positive_labels'],
                                     all_videos=True)
    mAP_base, pr_curve_base = evaluate(cc_dataset['ground_truth'],
                                       baseline_similarities,
                                       positive_labels=args['positive_labels'],
                                       all_videos=True)
    print('\nCC_WEB_VIDEO*')
    print('baseline mAP: ', mAP_base)
    print('DML mAP: ', mAP_dml)
    plot_pr_curve(pr_curve_dml, pr_curve_base, 'CC_WEB_VIDEO*')
            if 'preds_labels' in _dir]

    aucs, aps = [], []
    preds, trues = [], []
    for fname in flist:
        with open(fname, 'rb') as f:
            data = pickle.load(f)  # (pred, label) tuple

        aucs.append(get_auroc(data[1], data[0]))
        aps.append(get_ap(data[1], data[0]))
        preds.append(data[0])
        trues.append(data[1])

        plot_args = {'lw': 1, 'alpha': 0.5, 'color': 'gray', 'ls': '-'}
        plot_roc_curve(0, data[1], data[0], **plot_args)
        plot_pr_curve(1, data[1], data[0], **plot_args)

    plot_args = {'lw': 1, 'alpha': 0.9, 'color': 'black', 'ls': '-'}
    preds = np.concatenate(preds, axis=0)
    trues = np.concatenate(trues, axis=0)

    auc_cint = np.std(aucs) / np.sqrt(len(aucs)) * 1.96
    ap_cint = np.std(aps) / np.sqrt(len(aps)) * 1.96

    aucstr = '{} AUC: {:.4f} ({} {:.4f})'.format(model, np.mean(aucs),
                                                 u"\u00B1", auc_cint)
    apstr = '{} AP: {:.4f} ({} {:.4f})'.format(model, np.mean(aps), u"\u00B1",
                                               ap_cint)
    plot_roc_curve(0, trues, preds, legend=aucstr, **plot_args)
    plt.savefig(os.path.join(root_dir, 'auc'))
    plot_pr_curve(1, trues, preds, legend=apstr, **plot_args)