def runInference(args: argparse.Namespace): print('>>> Loading model') net = torch.load(args.model_weights) device = torch.device("cuda") net.to(device) print('>>> Loading the data') batch_size: int = args.batch_size num_classes: int = args.num_classes transform = transforms.Compose([ lambda img: np.array(img)[np.newaxis, ...], lambda nd: nd / 255, # max <= 1 lambda nd: torch.tensor(nd, dtype=torch.float32) ]) folders: List[Path] = [Path(args.data_folder)] names: List[str] = map_(lambda p: str(p.name), folders[0].glob("*.png")) dt_set = SliceDataset(names, folders, transforms=[transform], debug=False, C=num_classes) loader = DataLoader(dt_set, batch_size=batch_size, num_workers=batch_size + 2, shuffle=False, drop_last=False) print('>>> Starting the inference') savedir: str = args.save_folder total_iteration = len(loader) desc = f">> Inference" tq_iter = tqdm_(enumerate(loader), total=total_iteration, desc=desc) with torch.no_grad(): for j, (filenames, image, _) in tq_iter: image = image.to(device) pred_logits: Tensor = net(image) pred_probs: Tensor = F.softmax(pred_logits, dim=1) with warnings.catch_warnings(): warnings.simplefilter("ignore") predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, filenames, savedir, "", 0)
def runInference(args: argparse.Namespace): print('>>> Loading model') net = torch.load(args.model_weights) device = torch.device("cuda") net.to(device) print('>>> Loading the data') batch_size: int = args.batch_size num_classes: int = args.num_classes folders: list[Path] = [Path(args.data_folder)] names: list[str] = map_(lambda p: str(p.name), folders[0].glob("*.png")) dt_set = SliceDataset( names, folders * 2, # Duplicate for compatibility reasons are_hots=[False, False], transforms=[png_transform, dummy_gt_transform ], # So it is happy about the target size bounds_generators=[], debug=args.debug, K=num_classes) loader = DataLoader(dt_set, batch_size=batch_size, num_workers=batch_size + 2, shuffle=False, drop_last=False, collate_fn=custom_collate) print('>>> Starting the inference') savedir: Path = Path(args.save_folder) savedir.mkdir(parents=True, exist_ok=True) total_iteration = len(loader) desc = ">> Inference" tq_iter = tqdm_(enumerate(loader), total=total_iteration, desc=desc) with torch.no_grad(): for j, data in tq_iter: filenames: list[str] = data["filenames"] image: Tensor = data["images"].to(device) pred_logits: Tensor = net(image) pred_probs: Tensor = F.softmax(pred_logits, dim=1) with warnings.catch_warnings(): warnings.simplefilter("ignore") predicted_class: Tensor if args.mode == 'argmax': predicted_class = probs2class(pred_probs) elif args.mode == 'probs': predicted_class = (pred_probs[:, args.probs_class, ...] * 255).type(torch.uint8) elif args.mode == 'threshold': thresholded: Tensor = pred_probs[:, ...] > args.threshold predicted_class = thresholded.argmax(dim=1) elif args.mode == 'softmax': for i, filename in enumerate(filenames): np.save((savedir / filename).with_suffix(".npy"), pred_probs[i].cpu().numpy()) if args.mode != 'softmax': save_images(predicted_class, filenames, savedir)
def do_epoch(args, mode: str, net: Any, device: Any, loader: DataLoader, epc: int, loss_fns: List[Callable], loss_weights: List[float],loss_fns_source: List[Callable], loss_weights_source: List[float], new_w:int, num_steps:int, C: int, metric_axis:List[int], savedir: str = "", optimizer: Any = None, target_loader: Any = None): assert mode in ["train", "val"] L: int = len(loss_fns) indices = torch.tensor(metric_axis,device=device) if mode == "train": net.train() desc = f">> Training ({epc})" elif mode == "val": net.eval() # net.train() desc = f">> Validation ({epc})" total_it_s, total_images = len(loader), len(loader.dataset) total_it_t, total_images_t = len(target_loader), len(target_loader.dataset) total_iteration = max(total_it_s, total_it_t) # Lazy add lines below because we will be cycling until the biggest length is reached total_images = max(total_images, total_images_t) total_images_t = total_images pho=1 dtype = eval(args.dtype) all_dices: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_inter_card: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_card_gt: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_card_pred: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) loss_log: Tensor = torch.zeros((total_images), dtype=dtype, device=device) loss_inf: Tensor = torch.zeros((total_images), dtype=dtype, device=device) loss_cons: Tensor = torch.zeros((total_images), dtype=dtype, device=device) loss_fs: Tensor = torch.zeros((total_images), dtype=dtype, device=device) posim_log: Tensor = torch.zeros((total_images), dtype=dtype, device=device) haussdorf_log: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_grp: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) dice_3d_log: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) dice_3d_sd_log: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) if args.source_metrics == True: all_dices_s: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_inter_card_s: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_card_gt_s: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_card_pred_s: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_grp_s: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) dice_3d_s_log: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) dice_3d_s_sd_log: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) # if len(loader)>len(target_loader): # tq_iter = tqdm_(enumerate(zip(loader, cycle(target_loader))), total=total_iteration, desc=desc) # elif len(loader)<len(target_loader): # tq_iter = tqdm_(enumerate(zip(cycle(loader), target_loader)), total=total_iteration, desc=desc) # else: # tq_iter = tqdm_(enumerate(zip(loader, target_loader)), total=total_iteration, desc=desc) tq_iter = tqdm_(enumerate(zip(loader, target_loader)), total=total_iteration, desc=desc) #tq_iter = tqdm_(enumerate(target_loader), total=total_iteration, desc=desc) done: int = 0 #ratio_losses = 0 n_warmup = 0 mult_lw = [pho ** (epc - n_warmup + 1)] * len(loss_weights) #if epc > 100: # mult_lw = [pho ** 100] * len(loss_weights) mult_lw[0] = 1 loss_weights = [a * b for a, b in zip(loss_weights, mult_lw)] losses_vec, source_vec, target_vec, baseline_target_vec = [], [], [], [] pen_count = 0 with warnings.catch_warnings(): warnings.simplefilter("ignore") for j, (source_data, target_data) in tq_iter: #for j, target_data in tq_iter: source_data[1:] = [e.to(device) for e in source_data[1:]] # Move all tensors to device filenames_source, source_image, source_gt = source_data[:3] target_data[1:] = [e.to(device) for e in target_data[1:]] # Move all tensors to device filenames_target, target_image, target_gt = target_data[:3] labels = target_data[3:3+L] labels_source = source_data[3:3 + L] bounds = target_data[3+L:] bounds_source = source_data[3+L:] assert len(labels) == len(bounds), len(bounds) if args.mix == False: assert filenames_source == filenames_target #print(filenames_source,filenames_target) B = len(target_image) # Reset gradients if optimizer: #adjust_learning_rate(optimizer, 1, args.l_rate, num_steps, args.power) optimizer.zero_grad() # Forward with torch.set_grad_enabled(mode == "train"): pred_logits: Tensor = net(target_image) pred_logits_source: Tensor = net(source_image) pred_probs: Tensor = F.softmax(pred_logits, dim=1) pred_probs_source: Tensor = F.softmax(pred_logits_source, dim=1) if new_w > 0: pred_probs = resize(pred_probs, new_w) labels = [resize(label, new_w) for label in labels] target = resize(target, new_w) predicted_mask: Tensor = probs2one_hot(pred_probs) # Used only for dice computation predicted_mask_source: Tensor = probs2one_hot(pred_probs_source) # Used only for dice computation #print(torch.sum(predicted_mask, dim=[2,3]).cpu().numpy()) #print(list(map(lambda n: [int(f) for f in n], np.around(torch.sum(pred_probs, dim=[2,3]).detach().cpu().numpy())))) assert len(bounds) == len(loss_fns) == len(loss_weights) if epc < n_warmup: loss_weights = [0]*len(loss_weights) loss: Tensor = torch.zeros(1, requires_grad=True).to(device) loss_vec = [] loss_k = [] for loss_fn,label, w, bound in zip(loss_fns,labels, loss_weights, bounds): if w > 0: if args.lin_aug_w: if epc<70: w=w*(epc+1)/70 loss_b = loss_fn(pred_probs, label, bound) loss = loss + w * loss_b #pen_count += count_b.detach() #print(count_b.detach()) loss_k.append(w*loss_b.detach()) #for loss_fn, label, w, bound in zip(loss_fns_source, [source_gt], loss_weights_source, torch.randn(1)): #for loss_fn, label, w, bound in zip(loss_fns_source, labels_source, loss_weights_source, torch.randn(1)): for loss_fn, label, w, bound in zip(loss_fns_source, labels_source, loss_weights_source, bounds_source): if w > 0: loss_b = loss_fn(pred_probs_source, label, bound) loss = loss+ w * loss_b loss_k.append(w*loss_b.detach()) #print(loss_k) # Backward if optimizer: loss.backward() optimizer.step() # Compute and log metrics #dices: Tensor = dice_coef(predicted_mask.detach(), target.detach()) # baseline_dices: Tensor = dice_coef(labels[0].detach(), target.detach()) #batch_dice: Tensor = dice_batch(predicted_mask.detach(), target.detach()) # assert batch_dice.shape == (C,) and dices.shape == (B, C), (batch_dice.shape, dices.shape, B, C) dices, inter_card, card_gt, card_pred = dice_coef(predicted_mask.detach(), target_gt.detach()) assert dices.shape == (B, C), (dices.shape, B, C) sm_slice = slice(done, done + B) # Values only for current batch all_dices[sm_slice, ...] = dices # # for 3D dice all_grp[sm_slice, ...] = int(re.split('_', filenames_target[0])[1]) * torch.ones([1, C]) all_inter_card[sm_slice, ...] = inter_card all_card_gt[sm_slice, ...] = card_gt all_card_pred[sm_slice, ...] = card_pred # 3D dice on source if args.source_metrics ==True: dices_s, inter_card_s, card_gt_s, card_pred_s = dice_coef(predicted_mask_source.detach(), source_gt.detach()) all_grp_s[sm_slice, ...] = int(re.split('_', filenames_source[0])[1]) * torch.ones([1, C]) all_inter_card_s[sm_slice, ...] = inter_card_s all_card_gt_s[sm_slice, ...] = card_gt_s all_card_pred_s[sm_slice, ...] = card_pred_s #loss_log[sm_slice] = loss.detach() loss_inf[sm_slice] = loss_k[0] if len(loss_k)>1: loss_cons[sm_slice] = loss_k[1] else: loss_cons[sm_slice] = 0 if len(loss_k)>2: loss_fs[sm_slice] = loss_k[2] else: loss_fs[sm_slice] = 0 #posim_log[sm_slice] = torch.einsum("bcwh->b", [target_gt[:, 1:, :, :]]).detach() > 0 #haussdorf_res: Tensor = haussdorf(predicted_mask.detach(), target_gt.detach(), dtype) #assert haussdorf_res.shape == (B, C) #haussdorf_log[sm_slice] = haussdorf_res # # Save images if savedir: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) warnings.simplefilter("ignore") predicted_class: Tensor = probs2class(pred_probs) #save_images_p(predicted_class, filenames_target, args.dataset, mode, epc, False) save_images(predicted_class, filenames_target, savedir, mode, epc, True) # Logging big_slice = slice(0, done + B) # Value for current and previous batches stat_dict = {"dice": torch.index_select(all_dices, 1, indices).mean(), "loss": loss_log[big_slice].mean()} nice_dict = {k: f"{v:.4f}" for (k, v) in stat_dict.items()} done += B tq_iter.set_postfix(nice_dict) print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items())) #dice_posim = torch.masked_select(all_dices[:, -1], posim_log.type(dtype=torch.uint8)).mean() # dice3D gives back the 3d dice mai on images # if not args.debug: # dice_3d_log_o, dice_3d_sd_log_o = dice3d(args.workdir, f"iter{epc:03d}", mode, "Subj_\\d+_",args.dataset + mode + '/CT_GT', C) dice_3d_log, dice_3d_sd_log = dice3dn(all_grp, all_inter_card, all_card_gt, all_card_pred,metric_axis,True) if args.source_metrics ==True: dice_3d_s_log, dice_3d_s_sd_log = dice3dn(all_grp_s, all_inter_card_s, all_card_gt_s, all_card_pred_s,metric_axis,True) print("mean 3d_dice over all patients:",dice_3d_log) #source_vec = [ dice_3d_s, dice_3d_sd_s, haussdorf_log_s] dice_2d = torch.index_select(all_dices, 1, indices).mean().cpu().numpy() target_vec = [ dice_3d_log, dice_3d_sd_log, dice_2d] if args.source_metrics ==True: source_vec = [ dice_3d_s_log, dice_3d_s_sd_log] else: source_vec = [0,0] #losses_vec = [loss_log.mean().item()] losses_vec = [loss_inf.mean().item(),loss_cons.mean().item(),loss_fs.mean().item()] return losses_vec, target_vec,source_vec
def do_epoch(mode: str, net: Any, device: Any, loader: DataLoader, epc: int, loss_fns: List[Callable], loss_weights: List[float], C: int, savedir: str = "", optimizer: Any = None, metric_axis: List[int] = [1], compute_haussdorf: bool = False) \ -> Tuple[Tensor, Tensor, Tensor, Tensor]: assert mode in ["train", "val"] L: int = len(loss_fns) if mode == "train": net.train() desc = f">> Training ({epc})" elif mode == "val": net.eval() desc = f">> Validation ({epc})" total_iteration, total_images = len(loader), len(loader.dataset) all_dices: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device) batch_dices: Tensor = torch.zeros((total_iteration, C), dtype=torch.float32, device=device) loss_log: Tensor = torch.zeros((total_iteration), dtype=torch.float32, device=device) haussdorf_log: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device) tq_iter = tqdm_(enumerate(loader), total=total_iteration, desc=desc) done: int = 0 for j, data in tq_iter: data[1:] = [e.to(device) for e in data[1:]] # Move all tensors to device filenames, image, target = data[:3] labels = data[3:3 + L] bounds = data[3 + L:] assert len(labels) == len(bounds) B = len(image) # Reset gradients if optimizer: optimizer.zero_grad() # Forward pred_logits: Tensor = net(image) pred_probs: Tensor = F.softmax(pred_logits, dim=1) predicted_mask: Tensor = probs2one_hot( pred_probs.detach()) # Used only for dice computation assert len(bounds) == len(loss_fns) == len(loss_weights) ziped = zip(loss_fns, labels, loss_weights, bounds) losses = [ w * loss_fn(pred_probs, label, bound) for loss_fn, label, w, bound in ziped ] loss = reduce(add, losses) assert loss.shape == (), loss.shape # Backward if optimizer: loss.backward() optimizer.step() # Compute and log metrics loss_log[j] = loss.detach() sm_slice = slice(done, done + B) # Values only for current batch dices: Tensor = dice_coef(predicted_mask, target.detach()) assert dices.shape == (B, C), (dices.shape, B, C) all_dices[sm_slice, ...] = dices if B > 1 and mode == "val": batch_dice: Tensor = dice_batch(predicted_mask, target.detach()) assert batch_dice.shape == (C, ), (batch_dice.shape, B, C) batch_dices[j] = batch_dice if compute_haussdorf: haussdorf_res: Tensor = haussdorf(predicted_mask.detach(), target.detach()) assert haussdorf_res.shape == (B, C) haussdorf_log[sm_slice] = haussdorf_res # Save images if savedir: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, filenames, savedir, mode, epc) # Logging big_slice = slice(0, done + B) # Value for current and previous batches dsc_dict = { f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis } hauss_dict = { f"HD{n}": haussdorf_log[big_slice, n].mean() for n in metric_axis } if compute_haussdorf else {} batch_dict = { f"bDSC{n}": batch_dices[:j, n].mean() for n in metric_axis } if B > 1 and mode == "val" else {} mean_dict = { "DSC": all_dices[big_slice, metric_axis].mean(), "HD": haussdorf_log[big_slice, metric_axis].mean() } if len(metric_axis) > 1 else {} stat_dict = { **dsc_dict, **hauss_dict, **mean_dict, **batch_dict, "loss": loss_log[:j].mean() } nice_dict = {k: f"{v:.3f}" for (k, v) in stat_dict.items()} tq_iter.set_postfix(nice_dict) done += B print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items())) return loss_log, all_dices, batch_dices, haussdorf_log
def do_epoch(mode: str, net: Any, device: Any, loaders: List[DataLoader], epc: int, list_loss_fns: List[List[Callable]], list_loss_weights: List[List[float]], C: int, savedir: str = "", optimizer: Any = None, metric_axis: List[int] = [1], compute_haussdorf: bool = False, compute_miou: bool = False, temperature: float = 1) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tuple[None, Tensor]]: assert mode in ["train", "val"] if mode == "train": net.train() desc = f">> Training ({epc})" elif mode == "val": net.eval() desc = f">> Validation ({epc})" total_iteration: int = sum(len(loader) for loader in loaders) # U total_images: int = sum(len(loader.dataset) for loader in loaders) # D n_loss: int = max(map(len, list_loss_fns)) all_dices: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device) batch_dices: Tensor = torch.zeros((total_iteration, C), dtype=torch.float32, device=device) loss_log: Tensor = torch.zeros((total_iteration, n_loss), dtype=torch.float32, device=device) haussdorf_log: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device) iiou_log: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device) intersections: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device) unions: Tensor = torch.zeros((total_images, C), dtype=torch.float32, device=device) few_axis: bool = len(metric_axis) <= 3 done_img: int = 0 done_batch: int = 0 tq_iter = tqdm_(total=total_iteration, desc=desc) for i, (loader, loss_fns, loss_weights) in enumerate(zip(loaders, list_loss_fns, list_loss_weights)): L: int = len(loss_fns) for data in loader: data[1:] = [e.to(device) for e in data[1:]] # Move all tensors to device filenames, image, target = data[:3] assert not target.requires_grad labels = data[3:3 + L] bounds = data[3 + L:] assert len(labels) == len(bounds) B = len(image) # Reset gradients if optimizer: optimizer.zero_grad() # Forward pred_logits: Tensor = net(image) pred_probs: Tensor = F.softmax(temperature * pred_logits, dim=1) predicted_mask: Tensor = probs2one_hot(pred_probs.detach()) # Used only for dice computation assert not predicted_mask.requires_grad assert len(bounds) == len(loss_fns) == len(loss_weights) == len(labels) ziped = zip(loss_fns, labels, loss_weights, bounds) losses = [w * loss_fn(pred_probs, label, bound) for loss_fn, label, w, bound in ziped] loss = reduce(add, losses) assert loss.shape == (), loss.shape # if epc >= 1 and False: # import matplotlib.pyplot as plt # _, axes = plt.subplots(nrows=1, ncols=3) # axes[0].imshow(image[0, 0].cpu().numpy(), cmap='gray') # axes[0].contour(target[0, 1].cpu().numpy(), cmap='rainbow') # pred_np = pred_probs[0, 1].detach().cpu().numpy() # axes[1].imshow(pred_np) # bins = np.linspace(0, 1, 50) # axes[2].hist(pred_np.flatten(), bins) # print(bounds) # print(bounds[2].cpu().numpy()) # print(bounds[2][0, 1].cpu().numpy()) # print(pred_np.sum()) # plt.show() # Backward if optimizer: loss.backward() optimizer.step() # Compute and log metrics # loss_log[done_batch] = loss.detach() for j in range(len(loss_fns)): loss_log[done_batch, j] = losses[j].detach() sm_slice = slice(done_img, done_img + B) # Values only for current batch dices: Tensor = dice_coef(predicted_mask, target) assert dices.shape == (B, C), (dices.shape, B, C) all_dices[sm_slice, ...] = dices if B > 1 and mode == "val": batch_dice: Tensor = dice_batch(predicted_mask, target) assert batch_dice.shape == (C,), (batch_dice.shape, B, C) batch_dices[done_batch] = batch_dice if compute_haussdorf: haussdorf_res: Tensor = haussdorf(predicted_mask, target) assert haussdorf_res.shape == (B, C) haussdorf_log[sm_slice] = haussdorf_res if compute_miou: IoUs: Tensor = iIoU(predicted_mask, target) assert IoUs.shape == (B, C), IoUs.shape iiou_log[sm_slice] = IoUs intersections[sm_slice] = inter_sum(predicted_mask, target) unions[sm_slice] = union_sum(predicted_mask, target) # Save images if savedir: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, filenames, savedir, mode, epc) # Logging big_slice = slice(0, done_img + B) # Value for current and previous batches dsc_dict = {f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis} if few_axis else {} hauss_dict = {f"HD{n}": haussdorf_log[big_slice, n].mean() for n in metric_axis} \ if compute_haussdorf and few_axis else {} batch_dict = {f"bDSC{n}": batch_dices[:done_batch, n].mean() for n in metric_axis} \ if B > 1 and mode == "val" and few_axis else {} miou_dict = {f"iIoU": iiou_log[big_slice, metric_axis].mean(), f"mIoU": (intersections.sum(dim=0) / (unions.sum(dim=0) + 1e-10)).mean()} \ if compute_miou else {} if len(metric_axis) > 1: mean_dict = {"DSC": all_dices[big_slice, metric_axis].mean()} if compute_haussdorf: mean_dict["HD"] = haussdorf_log[big_slice, metric_axis].mean() else: mean_dict = {} stat_dict = {**miou_dict, **dsc_dict, **hauss_dict, **mean_dict, **batch_dict, "loss": loss_log[:done_batch].mean()} nice_dict = {k: f"{v:.3f}" for (k, v) in stat_dict.items()} done_img += B done_batch += 1 tq_iter.set_postfix({**nice_dict, "loader": str(i)}) tq_iter.update(1) tq_iter.close() print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items())) if compute_miou: mIoUs: Tensor = (intersections.sum(dim=0) / (unions.sum(dim=0) + 1e-10)) assert mIoUs.shape == (C,), mIoUs.shape else: mIoUs = None if not few_axis and False: print(f"DSC: {[f'{all_dices[:, n].mean():.3f}' for n in metric_axis]}") print(f"iIoU: {[f'{iiou_log[:, n].mean():.3f}' for n in metric_axis]}") if mIoUs: print(f"mIoU: {[f'{mIoUs[n]:.3f}' for n in metric_axis]}") return loss_log, all_dices, batch_dices, haussdorf_log, mIoUs
def do_epoch( mode: str, net: Any, device: Any, loaders: list[DataLoader], epc: int, list_loss_fns: list[list[Callable]], list_loss_weights: list[list[float]], K: int, savedir: str = "", optimizer: Any = None, metric_axis: list[int] = [1], compute_3d_dice: bool = False, temperature: float = 1) -> Tuple[Tensor, Tensor, Optional[Tensor]]: assert mode in ["train", "val", "dual"] if mode == "train": net.train() desc = f">> Training ({epc})" elif mode == "val": net.eval() desc = f">> Validation ({epc})" total_iteration: int = sum(len(loader) for loader in loaders) # U total_images: int = sum(len(loader.dataset) for loader in loaders) # D n_loss: int = max(map(len, list_loss_fns)) all_dices: Tensor = torch.zeros((total_images, K), dtype=torch.float32, device=device) loss_log: Tensor = torch.zeros((total_iteration, n_loss), dtype=torch.float32, device=device) three_d_dices: Optional[Tensor] if compute_3d_dice: three_d_dices = torch.zeros((total_iteration, K), dtype=torch.float32, device=device) else: three_d_dices = None done_img: int = 0 done_batch: int = 0 tq_iter = tqdm_(total=total_iteration, desc=desc) for i, (loader, loss_fns, loss_weights) in enumerate( zip(loaders, list_loss_fns, list_loss_weights)): for data in loader: # t0 = time() image: Tensor = data["images"].to(device) target: Tensor = data["gt"].to(device) filenames: list[str] = data["filenames"] assert not target.requires_grad labels: list[Tensor] = [e.to(device) for e in data["labels"]] B, C, *_ = image.shape # Reset gradients if optimizer: optimizer.zero_grad() # Forward pred_logits: Tensor = net(image) pred_probs: Tensor = F.softmax(temperature * pred_logits, dim=1) predicted_mask: Tensor = probs2one_hot( pred_probs.detach()) # Used only for dice computation assert not predicted_mask.requires_grad assert len(loss_fns) == len(loss_weights) == len(labels) ziped = zip(loss_fns, labels, loss_weights) losses = [ w * loss_fn(pred_probs, label) for loss_fn, label, w in ziped ] loss = reduce(add, losses) assert loss.shape == (), loss.shape # Backward if optimizer: loss.backward() optimizer.step() # Compute and log metrics for j in range(len(loss_fns)): loss_log[done_batch, j] = losses[j].detach() sm_slice = slice(done_img, done_img + B) # Values only for current batch dices: Tensor = dice_coef(predicted_mask, target) assert dices.shape == (B, K), (dices.shape, B, K) all_dices[sm_slice, ...] = dices if compute_3d_dice: three_d_DSC: Tensor = dice_batch(predicted_mask, target) assert three_d_DSC.shape == (K, ) three_d_dices[done_batch] = three_d_DSC # type: ignore # Save images if savedir: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, filenames, savedir, mode, epc) # Logging big_slice = slice(0, done_img + B) # Value for current and previous batches dsc_dict: dict = {f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis} | \ ({f"3d_DSC{n}": three_d_dices[:done_batch, n].mean() for n in metric_axis} if three_d_dices is not None else {}) loss_dict = { f"loss_{i}": loss_log[:done_batch].mean(dim=0)[i] for i in range(n_loss) } stat_dict = dsc_dict | loss_dict nice_dict = {k: f"{v:.3f}" for (k, v) in stat_dict.items()} done_img += B done_batch += 1 tq_iter.set_postfix({**nice_dict, "loader": str(i)}) tq_iter.update(1) tq_iter.close() print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items())) return (loss_log.detach().cpu(), all_dices.detach().cpu(), three_d_dices.detach().cpu() if three_d_dices is not None else None)
def update_labels(self, net, device, axis: int = 2, savedir: str = "") -> None: print(f"> Updating {len(self)} labels...") assert self.train_mode # w_, h_ = self.img_size h_, w_ = self.img_size u_raw = RawArray(ctypes.c_float, self.batch_size * self.K * h_ * w_) u_np = np.frombuffer(u_raw, dtype=np.float32).reshape(self.batch_size, self.K, h_, w_) img_raw = RawArray(ctypes.c_char, self.batch_size * 3 * h_ * w_) img_np = np.frombuffer(img_raw, dtype=np.uint8).reshape(self.batch_size, h_, w_, 3) final_raw = RawArray(ctypes.c_float, self.batch_size * self.K * h_ * w_) final_np = np.frombuffer(final_raw, dtype=np.float32).reshape(self.batch_size, self.K, h_, w_) pool = Pool(self.batch_size, initializer=init_crf_vars, initargs=(u_raw, img_raw, final_raw)) i = 0 with torch.no_grad(): for data in tqdm(self.loader): imgs: Tensor = data['images'].to(device) uint_images: Tensor = data['uint_images'] orig_boxes: Tensor = data['orig_boxes'] logits: Tensor = net(imgs) probs: Tensor = F.softmax(logits, dim=1) assert simplex(probs) final_probs = torch.zeros_like(probs) U: np.ndarray = (-probs.log()).cpu().numpy() assert U.dtype == np.float32 # del probs B, K, W, H = U.shape u_np[:B, ...] = U[:B, ...] assert B <= self.batch_size assert K == self.K assert (W, H) == self.img_size, (W, H, self.img_size) assert uint_images.shape == (B, W, H, 3), (uint_images.shape, (B, W, H, 3)) proc_fn: Callable = partial(crf_post_process, B=self.batch_size, W=W, H=H, K=K) uintimages: np.ndarray = uint_images.numpy() img_np[:B, ...] = uintimages[:B, ...] pool.map(proc_fn, range(B)) final_probs = torch.tensor(final_np[:B, ...]) assert simplex(final_probs) proposals: Tensor = probs2class(final_probs) assert proposals.shape == (B, W, H), proposals.shape assert orig_boxes.shape == (B, K, W, H), orig_boxes.shape # We do not want the proposals to overflow outside the box final_proposals: Tensor = einsum("bwh,bwh->bwh", orig_boxes[:, 1, :, :], proposals) # for b in range(B): # im = imgs[b, 0].cpu().numpy() # gt = data['gt'][b, 1].cpu().numpy() # import matplotlib.pyplot as plt # from mpl_toolkits.axes_grid1 import ImageGrid # fig = plt.figure() # fig.clear() # grid = ImageGrid(fig, 211, nrows_ncols=(1, 5)) # grid[0].imshow(im, cmap="gray") # grid[0].imshow(gt, cmap='jet', alpha=.5, vmax=1) # grid[1].imshow(im, cmap="gray") # grid[1].imshow(orig_boxes[b, 1].cpu().numpy(), cmap='jet', alpha=.5, vmax=1) # grid[2].imshow(im, cmap="gray") # grid[2].imshow(probs[b, 1].cpu().numpy(), cmap='jet', alpha=.5, vmax=1) # grid[3].imshow(im, cmap="gray") # grid[3].imshow(final_probs[b, 1], cmap='jet', alpha=.5, vmax=1) # grid[4].imshow(im, cmap="gray") # grid[4].imshow(final_proposals[b], cmap='jet', alpha=.5, vmax=1) # plt.show() # And now the interesting part, replace live the stored images for b in range(B): # for proposal in final_proposals: # type: ignore proposal = final_proposals[b] assert proposal.shape == self.img_size pil_img = Image.fromarray(proposal.cpu().numpy().astype('uint8'), mode='L') buffer_ = io.BytesIO() pil_img.save(buffer_, format='PNG') if savedir: pil_img.save(str(Path(savedir, data["filenames"][b]).with_suffix(".png"))) # print(buffer_) self.files[axis][i] = buffer_ i += 1 assert i == len(self)
def runInference(args: argparse.Namespace): print('>>> Loading model') net = torch.load(args.model_weights) device = torch.device("cuda") net.to(device) print('>>> Loading the data') batch_size: int = args.batch_size num_classes: int = args.num_classes png_transform = transforms.Compose([ lambda img: img.convert('L'), lambda img: np.array(img)[np.newaxis, ...], lambda nd: nd / 255, # max <= 1 lambda nd: torch.tensor(nd, dtype=torch.float32) ]) dummy_gt = transforms.Compose([ lambda img: np.array(img), lambda nd: torch.zeros( (num_classes, *(nd.shape)), dtype=torch.int64) ]) folders: List[Path] = [Path(args.data_folder)] names: List[str] = map_(lambda p: str(p.name), folders[0].glob("*.png")) dt_set = SliceDataset( names, folders * 2, # Duplicate for compatibility reasons are_hots=[False, False], transforms=[png_transform, dummy_gt], # So it is happy about the target size bounds_generators=[], debug=False, C=num_classes) loader = DataLoader(dt_set, batch_size=batch_size, num_workers=batch_size + 2, shuffle=False, drop_last=False) print('>>> Starting the inference') savedir: str = args.save_folder total_iteration = len(loader) desc = f">> Inference" tq_iter = tqdm_(enumerate(loader), total=total_iteration, desc=desc) with torch.no_grad(): for j, (filenames, image, _) in tq_iter: image = image.to(device) pred_logits: Tensor = net(image) pred_probs: Tensor = F.softmax(pred_logits, dim=1) with warnings.catch_warnings(): warnings.simplefilter("ignore") predicted_class: Tensor if args.mode == "argmax": predicted_class = probs2class(pred_probs) elif args.mode == 'probs': predicted_class = (pred_probs[:, args.probs_class, ...] * 255).type(torch.uint8) elif args.mode == "threshold": thresholded: Tensor = pred_probs[:, ...] > args.threshold predicted_class = thresholded.argmax(dim=1) save_images(predicted_class, filenames, savedir, "", 0)
def do_epoch(args, mode: str, net: Any, device: Any, epc: int, loss_fns: List[Callable], loss_weights: List[float], new_w:int, C: int, metric_axis:List[int], savedir: str = "", optimizer: Any = None, target_loader: Any = None, best_dice3d_val:Any=None): assert mode in ["train", "val"] L: int = len(loss_fns) indices = torch.tensor(metric_axis,device=device) if mode == "train": net.train() desc = f">> Training ({epc})" elif mode == "val": net.eval() # net.train() desc = f">> Validation ({epc})" total_it_t, total_images_t = len(target_loader), len(target_loader.dataset) total_iteration = total_it_t total_images = total_images_t if args.debug: total_iteration = 10 pho=1 dtype = eval(args.dtype) all_dices: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_sizes: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_sizes: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_gt_sizes: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_sizes2: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_inter_card: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_card_gt: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_card_pred: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_gt = [] all_pred = [] if args.do_hd: all_gt: Tensor = torch.zeros((total_images, args.wh, args.wh), dtype=dtype) all_pred: Tensor = torch.zeros((total_images, args.wh, args.wh), dtype=dtype) loss_log: Tensor = torch.zeros((total_images), dtype=dtype, device=device) loss_cons: Tensor = torch.zeros((total_images), dtype=dtype, device=device) loss_se: Tensor = torch.zeros((total_images), dtype=dtype, device=device) loss_tot: Tensor = torch.zeros((total_images), dtype=dtype, device=device) posim_log: Tensor = torch.zeros((total_images), dtype=dtype, device=device) haussdorf_log: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_grp: Tensor = torch.zeros((total_images, C), dtype=dtype, device=device) all_pnames = np.zeros([total_images]).astype('U256') #dice_3d_log: Tensor = torch.zeros((1, C), dtype=dtype, device=device) dice_3d_log, dice_3d_sd_log = 0, 0 #dice_3d_sd_log: Tensor = torch.zeros((1, C), dtype=dtype, device=device) hd_3d_log, asd_3d_log, hd_3d_sd_log, asd_3d_sd_log= 0, 0, 0, 0 tq_iter = tqdm_(enumerate(target_loader), total=total_iteration, desc=desc) done: int = 0 n_warmup = args.n_warmup mult_lw = [pho ** (epc - n_warmup + 1)] * len(loss_weights) mult_lw[0] = 1 loss_weights = [a * b for a, b in zip(loss_weights, mult_lw)] losses_vec, source_vec, target_vec, baseline_target_vec = [], [], [], [] pen_count = 0 with warnings.catch_warnings(): warnings.simplefilter("ignore") count_losses = 0 for j, target_data in tq_iter: target_data[1:] = [e.to(device) for e in target_data[1:]] # Move all tensors to device filenames_target, target_image, target_gt = target_data[:3] #print("target", filenames_target) labels = target_data[3:3+L] bounds = target_data[3+L:] filenames_target = [f.split('.nii')[0] for f in filenames_target] assert len(labels) == len(bounds), len(bounds) B = len(target_image) # Reset gradients if optimizer: optimizer.zero_grad() # Forward with torch.set_grad_enabled(mode == "train"): pred_logits: Tensor = net(target_image) pred_probs: Tensor = F.softmax(pred_logits, dim=1) if new_w > 0: pred_probs = resize(pred_probs, new_w) labels = [resize(label, new_w) for label in labels] target = resize(target, new_w) predicted_mask: Tensor = probs2one_hot(pred_probs) # Used only for dice computation assert len(bounds) == len(loss_fns) == len(loss_weights) if epc < n_warmup: loss_weights = [0]*len(loss_weights) loss: Tensor = torch.zeros(1, requires_grad=True).to(device) loss_vec = [] loss_kw = [] for loss_fn,label, w, bound in zip(loss_fns,labels, loss_weights, bounds): if w > 0: if eval(args.target_losses)[0][0]=="EntKLProp": loss_1, loss_cons_prior,est_prop = loss_fn(pred_probs, label, bound) loss = loss_1 + loss_cons_prior else: loss = loss_fn(pred_probs, label, bound) loss = w*loss loss_1 = loss loss_kw.append(loss_1.detach()) # Backward if optimizer: loss.backward() optimizer.step() dices, inter_card, card_gt, card_pred = dice_coef(predicted_mask.detach(), target_gt.detach()) assert dices.shape == (B, C), (dices.shape, B, C) sm_slice = slice(done, done + B) # Values only for current batch all_dices[sm_slice, ...] = dices if eval(args.target_losses)[0][0] in ["EntKLProp"]: all_sizes[sm_slice, ...] = torch.round(est_prop.detach()*target_image.shape[2]*target_image.shape[3]) all_sizes2[sm_slice, ...] = torch.sum(predicted_mask,dim=(2,3)) all_gt_sizes[sm_slice, ...] = torch.sum(target_gt,dim=(2,3)) all_grp[sm_slice, ...] = torch.FloatTensor(get_subj_nb(filenames_target)).unsqueeze(1).repeat(1,C) all_pnames[sm_slice] = filenames_target all_inter_card[sm_slice, ...] = inter_card all_card_gt[sm_slice, ...] = card_gt all_card_pred[sm_slice, ...] = card_pred if args.do_hd: all_pred[sm_slice, ...] = probs2class(predicted_mask[:,:,:,:]).cpu().detach() all_gt[sm_slice, ...] = probs2class(target_gt).detach() loss_se[sm_slice] = loss_kw[0] if len(loss_kw)>1: loss_cons[sm_slice] = loss_kw[1] loss_tot[sm_slice] = loss_kw[1]+loss_kw[0] else: loss_cons[sm_slice] = 0 loss_tot[sm_slice] = loss_kw[0] # # Save images if savedir and args.saveim and mode =="val": with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) warnings.simplefilter("ignore") predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, filenames_target, savedir, mode, epc, False) if args.entmap: ent_map = torch.einsum("bcwh,bcwh->bwh", [-pred_probs, (pred_probs+1e-10).log()]) save_images_ent(ent_map, filenames_target, savedir,'ent_map', epc) # Logging big_slice = slice(0, done + B) # Value for current and previous batches stat_dict = {**{f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis}, **{f"SZ{n}": all_sizes[big_slice, n].mean() for n in metric_axis}, **({f"DSC_source{n}": all_dices_s[big_slice, n].mean() for n in metric_axis} if args.source_metrics else {})} size_dict = {**{f"SZ{n}": all_sizes[big_slice, n].mean() for n in metric_axis}} nice_dict = {k: f"{v:.4f}" for (k, v) in stat_dict.items()} done += B tq_iter.set_postfix(nice_dict) if args.dice_3d and (mode == 'val'): dice_3d_log, dice_3d_sd_log,asd_3d_log, asd_3d_sd_log,hd_3d_log, hd_3d_sd_log = dice3d(all_grp, all_inter_card, all_card_gt, all_card_pred,all_pred,all_gt,all_pnames,metric_axis,args.pprint,args.do_hd,args.do_asd,best_dice3d_val) dice_2d = torch.index_select(all_dices, 1, indices).mean().cpu().numpy().item() target_vec = [dice_3d_log, dice_3d_sd_log,asd_3d_log, asd_3d_sd_log,hd_3d_log,hd_3d_sd_log,dice_2d] size_mean = torch.index_select(all_sizes2, 1, indices).mean(dim=0).cpu().numpy() size_gt_mean = torch.index_select(all_gt_sizes, 1, indices).mean(dim=0).cpu().numpy() mask_pos = torch.index_select(all_sizes2, 1, indices)!=0 gt_pos = torch.index_select(all_gt_sizes, 1, indices)!=0 size_mean_pos = torch.index_select(all_sizes2, 1, indices).sum(dim=0).cpu().numpy()/mask_pos.sum(dim=0).cpu().numpy() gt_size_mean_pos = torch.index_select(all_gt_sizes, 1, indices).sum(dim=0).cpu().numpy()/gt_pos.sum(dim=0).cpu().numpy() size_mean2 = torch.index_select(all_sizes2, 1, indices).mean(dim=0).cpu().numpy() losses_vec = [loss_se.mean().item(),loss_cons.mean().item(),loss_tot.mean().item(),size_mean.mean(),size_mean_pos.mean(),size_gt_mean.mean(),gt_size_mean_pos.mean()] if not epc%50: df_t = pd.DataFrame({ "val_ids":all_pnames, "proposal_size":all_sizes2.cpu()}) df_t.to_csv(Path(savedir,mode+str(epc)+"sizes.csv"), float_format="%.4f", index_label="epoch") return losses_vec, target_vec,source_vec
def do_save_images(pred_probs, savedir, filenames, mode, epc): if savedir: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, filenames, savedir, mode, epc, True)
def do_epoch( mode: str, net: Any, device: Any, loaders: List[DataLoader], epc: int, list_loss_fns: List[List[Callable]], list_loss_weights: List[List[float]], K: int, savedir: str = "", optimizer: Any = None, metric_axis: List[int] = [1], compute_hausdorff: bool = False, compute_miou: bool = False, compute_3d_dice: bool = False, temperature: float = 1 ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor]]: assert mode in ["train", "val"] if mode == "train": net.train() desc = f">> Training ({epc})" elif mode == "val": net.eval() desc = f">> Validation ({epc})" total_iteration: int = sum(len(loader) for loader in loaders) # U total_images: int = sum(len(loader.dataset) for loader in loaders) # D n_loss: int = max(map(len, list_loss_fns)) all_dices: Tensor = torch.zeros((total_images, K), dtype=torch.float32, device=device) loss_log: Tensor = torch.zeros((total_iteration, n_loss), dtype=torch.float32, device=device) iiou_log: Optional[Tensor] intersections: Optional[Tensor] unions: Optional[Tensor] if compute_miou: iiou_log = torch.zeros((total_images, K), dtype=torch.float32, device=device) intersections = torch.zeros((total_images, K), dtype=torch.float32, device=device) unions = torch.zeros((total_images, K), dtype=torch.float32, device=device) else: iiou_log = None intersections = None unions = None three_d_dices: Optional[Tensor] if compute_3d_dice: three_d_dices = torch.zeros((total_iteration, K), dtype=torch.float32, device=device) else: three_d_dices = None hausdorff_log: Optional[Tensor] if compute_hausdorff: hausdorff_log = torch.zeros((total_images, K), dtype=torch.float32, device=device) else: hausdorff_log = None few_axis: bool = len(metric_axis) <= 3 done_img: int = 0 done_batch: int = 0 tq_iter = tqdm_(total=total_iteration, desc=desc) for i, (loader, loss_fns, loss_weights) in enumerate( zip(loaders, list_loss_fns, list_loss_weights)): for data in loader: image: Tensor = data["images"].to(device) target: Tensor = data["gt"].to(device) spacings: Tensor = data["spacings"] # Keep that one on CPU assert not target.requires_grad labels: List[Tensor] = [e.to(device) for e in data["labels"]] bounds: List[Tensor] = [e.to(device) for e in data["bounds"]] box_priors: List[List[Tuple[ Tensor, Tensor]]] # one more level for the batch box_priors = [[(m.to(device), b.to(device)) for (m, b) in B] for B in data["box_priors"]] assert len(labels) == len(bounds) B, C, *_ = image.shape samplings: List[List[Tuple[slice]]] = data["samplings"] assert len(samplings) == B assert len(samplings[0][0]) == len( image[0, 0].shape), (samplings[0][0], image[0, 0].shape) probs_receptacle: Tensor = -torch.ones_like( target, dtype=torch.float32) # -1 for unfilled mask_receptacle: Tensor = -torch.ones_like( target, dtype=torch.int32) # -1 for unfilled # Use the sampling coordinates of the first batch item assert not (len(samplings[0]) > 1 and B > 1), samplings # No subsampling if batch size > 1 loss_sub_log: Tensor = torch.zeros( (len(samplings[0]), len(loss_fns)), dtype=torch.float32, device=device) for k, sampling in enumerate(samplings[0]): img_sampling = [slice(0, B), slice(0, C)] + list(sampling) label_sampling = [slice(0, B), slice(0, K)] + list(sampling) assert len(img_sampling) == len(image.shape), (img_sampling, image.shape) sub_img = image[img_sampling] # Reset gradients if optimizer: optimizer.zero_grad() # Forward pred_logits: Tensor = net(sub_img) pred_probs: Tensor = F.softmax(temperature * pred_logits, dim=1) predicted_mask: Tensor = probs2one_hot( pred_probs.detach()) # Used only for dice computation assert not predicted_mask.requires_grad probs_receptacle[label_sampling] = pred_probs[...] mask_receptacle[label_sampling] = predicted_mask[...] assert len(bounds) == len(loss_fns) == len( loss_weights) == len(labels) ziped = zip(loss_fns, labels, loss_weights, bounds) losses = [ w * loss_fn(pred_probs, label[label_sampling], bound, box_priors) for loss_fn, label, w, bound in ziped ] loss = reduce(add, losses) assert loss.shape == (), loss.shape # Backward if optimizer: loss.backward() optimizer.step() # Compute and log metrics for j in range(len(loss_fns)): loss_sub_log[k, j] = losses[j].detach() reduced_loss_sublog: Tensor = loss_sub_log.sum(dim=0) assert reduced_loss_sublog.shape == (len(loss_fns), ), ( reduced_loss_sublog.shape, len(loss_fns)) loss_log[done_batch, ...] = reduced_loss_sublog[...] del loss_sub_log sm_slice = slice(done_img, done_img + B) # Values only for current batch dices: Tensor = dice_coef(mask_receptacle, target) assert dices.shape == (B, K), (dices.shape, B, K) all_dices[sm_slice, ...] = dices if compute_3d_dice: three_d_DSC: Tensor = dice_batch(mask_receptacle, target) assert three_d_DSC.shape == (K, ) three_d_dices[done_batch] = three_d_DSC # type: ignore if compute_hausdorff: hausdorff_res: Tensor try: hausdorff_res = hausdorff(mask_receptacle, target, spacings) except RuntimeError: hausdorff_res = torch.zeros((B, K), device=device) assert hausdorff_res.shape == (B, K) hausdorff_log[sm_slice] = hausdorff_res # type: ignore if compute_miou: IoUs: Tensor = iIoU(mask_receptacle, target) assert IoUs.shape == (B, K), IoUs.shape iiou_log[sm_slice] = IoUs # type: ignore intersections[sm_slice] = inter_sum(mask_receptacle, target) # type: ignore unions[sm_slice] = union_sum(mask_receptacle, target) # type: ignore # if False and target[0, 1].sum() > 0: # Useful template for quick and dirty inspection # import matplotlib.pyplot as plt # from pprint import pprint # from mpl_toolkits.axes_grid1 import ImageGrid # from utils import soft_length # print(data["filenames"]) # pprint(data["bounds"]) # pprint(soft_length(mask_receptacle)) # fig = plt.figure() # fig.clear() # grid = ImageGrid(fig, 211, nrows_ncols=(1, 2)) # grid[0].imshow(data["images"][0, 0], cmap="gray") # grid[0].contour(data["gt"][0, 1], cmap='jet', alpha=.75, linewidths=2) # grid[1].imshow(data["images"][0, 0], cmap="gray") # grid[1].contour(mask_receptacle[0, 1], cmap='jet', alpha=.75, linewidths=2) # plt.show() # Save images if savedir: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, data["filenames"], savedir, mode, epc) # Logging big_slice = slice(0, done_img + B) # Value for current and previous batches dsc_dict: Dict if few_axis: dsc_dict = { **{ f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis }, **({ f"3d_DSC{n}": three_d_dices[:done_batch, n].mean() for n in metric_axis } if three_d_dices is not None else {}) } else: dsc_dict = {} # dsc_dict = {f"DSC{n}": all_dices[big_slice, n].mean() for n in metric_axis} if few_axis else {} hauss_dict = {f"HD{n}": hausdorff_log[big_slice, n].mean() for n in metric_axis} \ if hausdorff_log is not None and few_axis else {} miou_dict = {f"iIoU": iiou_log[big_slice, metric_axis].mean(), f"mIoU": (intersections.sum(dim=0) / (unions.sum(dim=0) + 1e-10)).mean()} \ if iiou_log is not None and intersections is not None and unions is not None else {} if len(metric_axis) > 1: mean_dict = {"DSC": all_dices[big_slice, metric_axis].mean()} if hausdorff_log: mean_dict["HD"] = hausdorff_log[big_slice, metric_axis].mean() else: mean_dict = {} stat_dict = { **miou_dict, **dsc_dict, **hauss_dict, **mean_dict, "loss": loss_log[:done_batch].mean() } nice_dict = {k: f"{v:.3f}" for (k, v) in stat_dict.items()} done_img += B done_batch += 1 tq_iter.set_postfix({**nice_dict, "loader": str(i)}) tq_iter.update(1) tq_iter.close() print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items())) mIoUs: Optional[Tensor] if intersections and unions: mIoUs = (intersections.sum(dim=0) / (unions.sum(dim=0) + 1e-10)) assert mIoUs.shape == (K, ), mIoUs.shape else: mIoUs = None if not few_axis and False: print(f"DSC: {[f'{all_dices[:, n].mean():.3f}' for n in metric_axis]}") print(f"iIoU: {[f'{iiou_log[:, n].mean():.3f}' for n in metric_axis]}") if mIoUs: print(f"mIoU: {[f'{mIoUs[n]:.3f}' for n in metric_axis]}") return ( loss_log.detach().cpu(), all_dices.detach().cpu(), hausdorff_log.detach().cpu() if hausdorff_log is not None else None, mIoUs.detach().cpu() if mIoUs is not None else None, three_d_dices.detach().cpu() if three_d_dices is not None else None)
def do_epoch(mode: str, net: Any, device: Any, loaders: list[DataLoader], epc: int, list_loss_fns: list[list[Callable]], list_loss_weights: list[list[float]], K: int, savedir: Path = None, optimizer: Any = None, metric_axis: list[int] = [1], requested_metrics: list[str] = None, temperature: float = 1) -> dict[str, Tensor]: assert mode in ["train", "val", "dual"] if requested_metrics is None: requested_metrics = [] if mode == "train": net.train() desc = f">> Training ({epc})" elif mode == "val": net.eval() desc = f">> Validation ({epc})" elif mode == "dual": net.eval() desc = f">> Dual ({epc})" total_iteration: int = sum(len(loader) for loader in loaders) # U total_images: int = sum(len(loader.dataset) for loader in loaders) # D n_loss: int = max(map(len, list_loss_fns)) epoch_metrics: dict[str, Tensor] epoch_metrics = {"dice": torch.zeros((total_images, K), dtype=torch.float32, device=device), "loss": torch.zeros((total_iteration, n_loss), dtype=torch.float32, device=device)} if "3d_dsc" in requested_metrics: epoch_metrics["3d_dsc"] = torch.zeros((total_iteration, K), dtype=torch.float32, device=device) few_axis: bool = len(metric_axis) <= 4 # time_log: np.ndarray = np.ndarray(total_iteration, dtype=np.float32) done_img: int = 0 done_batch: int = 0 tq_iter = tqdm_(total=total_iteration, desc=desc) for i, (loader, loss_fns, loss_weights) in enumerate(zip(loaders, list_loss_fns, list_loss_weights)): for data in loader: # t0 = time() image: Tensor = data["images"].to(device) target: Tensor = data["gt"].to(device) filenames: list[str] = data["filenames"] assert not target.requires_grad labels: list[Tensor] = [e.to(device) for e in data["labels"]] bounds: list[Tensor] = [e.to(device) for e in data["bounds"]] assert len(labels) == len(bounds) B, C, *_ = image.shape samplings: list[list[Tuple[slice]]] = data["samplings"] assert len(samplings) == B assert len(samplings[0][0]) == len(image[0, 0].shape), (samplings[0][0], image[0, 0].shape) probs_receptacle: Tensor = - torch.ones_like(target, dtype=torch.float32) # -1 for unfilled mask_receptacle: Tensor = - torch.ones_like(target, dtype=torch.int32) # -1 for unfilled # Use the sampling coordinates of the first batch item assert not (len(samplings[0]) > 1 and B > 1), samplings # No subsampling if batch size > 1 loss_sub_log: Tensor = torch.zeros((len(samplings[0]), len(loss_fns)), dtype=torch.float32, device=device) for k, sampling in enumerate(samplings[0]): img_sampling = [slice(0, B), slice(0, C)] + list(sampling) label_sampling = [slice(0, B), slice(0, K)] + list(sampling) assert len(img_sampling) == len(image.shape), (img_sampling, image.shape) sub_img = image[img_sampling] # Reset gradients if optimizer: optimizer.zero_grad() # Forward pred_logits: Tensor = net(sub_img) pred_probs: Tensor = F.softmax(temperature * pred_logits, dim=1) # Used only for dice computation: predicted_mask: Tensor = probs2one_hot(pred_probs.detach()) assert not predicted_mask.requires_grad probs_receptacle[label_sampling] = pred_probs[...] mask_receptacle[label_sampling] = predicted_mask[...] assert len(bounds) == len(loss_fns) == len(loss_weights) == len(labels) ziped = zip(loss_fns, labels, loss_weights, bounds) losses = [w * loss_fn(pred_probs, label[label_sampling], bound, filenames) for loss_fn, label, w, bound in ziped] loss = reduce(add, losses) assert loss.shape == (), loss.shape # Backward if optimizer: loss.backward() optimizer.step() # Compute and log metrics for j in range(len(loss_fns)): loss_sub_log[k, j] = losses[j].detach() reduced_loss_sublog: Tensor = loss_sub_log.sum(dim=0) assert reduced_loss_sublog.shape == (len(loss_fns),), (reduced_loss_sublog.shape, len(loss_fns)) epoch_metrics["loss"][done_batch, ...] = reduced_loss_sublog[...] del loss_sub_log sm_slice = slice(done_img, done_img + B) # Values only for current batch dices: Tensor = dice_coef(mask_receptacle, target) assert dices.shape == (B, K), (dices.shape, B, K) epoch_metrics["dice"][sm_slice, ...] = dices if "3d_dsc" in requested_metrics: three_d_DSC: Tensor = dice_batch(mask_receptacle, target) assert three_d_DSC.shape == (K,) epoch_metrics["3d_dsc"][done_batch] = three_d_DSC # type: ignore # Save images if savedir: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) predicted_class: Tensor = probs2class(pred_probs) save_images(predicted_class, data["filenames"], savedir / f"iter{epc:03d}" / mode) # Logging big_slice = slice(0, done_img + B) # Value for current and previous batches stat_dict: dict[str, Any] = {} # The order matters for the final display -- it is easy to change if few_axis: stat_dict |= {f"DSC{n}": epoch_metrics["dice"][big_slice, n].mean() for n in metric_axis} if "3d_dsc" in requested_metrics: stat_dict |= {f"3d_DSC{n}": epoch_metrics["3d_dsc"][:done_batch, n].mean() for n in metric_axis} if len(metric_axis) > 1: stat_dict |= {"DSC": epoch_metrics["dice"][big_slice, metric_axis].mean()} stat_dict |= {f"loss_{i}": epoch_metrics["loss"][:done_batch].mean(dim=0)[i] for i in range(n_loss)} nice_dict = {k: f"{v:.3f}" for (k, v) in stat_dict.items()} # t1 = time() # time_log[done_batch] = (t1 - t0) done_img += B done_batch += 1 tq_iter.set_postfix({**nice_dict, "loader": str(i)}) tq_iter.update(1) tq_iter.close() print(f"{desc} " + ', '.join(f"{k}={v}" for (k, v) in nice_dict.items())) return {k: v.detach().cpu() for (k, v) in epoch_metrics.items()}