Exemple #1
0
def test_BQE_CrossDataset_Similarity(Dataset):
    if Dataset == 'DukeFromMarket':
        DirCNN = '..\\FeatureCNN\\DukeMTMC'
        #Cross Dataset
        DirCross = '..\\FeatureCNN\\CrossDataset\\DukeFromMarket_feature.pkl'
        DirBayes = '..\\Bayes_Market_trained.pkl'

    elif Dataset == 'MarketFromDuke':
        DirCNN = '..\\FeatureCNN\\Market-1501'
        #Cross Dataset
        DirCross = '..\\FeatureCNN\\CrossDataset\\MarketFromDuke_feature.pkl'
        DirBayes = '..\\Bayes_Duke_trained.pkl'
    else:
        print('ERRORE')

    print('START')
    #Feature CNN
    testData, queryData, trainingData = loadCNN(DirCNN)

    #Load BayesianModel gia addestrato
    Bayes = loadFile(DirBayes)

    test_cams, test_feature, test_id, test_desc = testData
    query_cams, query_feature, query_id, query_desc = queryData
    train_cams, train_feature, train_id, train_desc = trainingData

    #Cross dataset
    f = open(DirCross, 'rb')
    test_feature, query_feature = pickle.load(f)
    f.close()

    gallery, gallery_id, gallery_cams = test_feature, test_id, test_cams
    query, query_id, query_cams = query_feature[0::], query_id[
        0::], query_cams[0::]

    start = time.time()

    print('START TEST')

    n, k = 3, 5
    vettori_cmc, ranks, mAP_list = [], [], []
    for i in range(n + 1):
        ranks_index, ranks_probability, ranks_label = calculateRanks_Similarity(
            query, gallery, gallery_id, Bayes)
        ranks.append(ranks_index)
        print('Ranks calcolato')

        #Calcolo la cmc
        cmc_vector = calculateCmcFromRanks(ranks_index, ranks_label, query_id,
                                           gallery_cams, query_cams)
        vettori_cmc.append(cmc_vector)

        #Calcolo mAP
        mAP = calculate_mAP(ranks_index, ranks_label, query_id, gallery_cams,
                            query_cams)
        mAP_list.append(mAP)

        #Calcolo la nuova query
        query = queryExpansion(ranks_index,
                               ranks_probability,
                               gallery,
                               query,
                               k,
                               AQE=False,
                               soglia=0.5)
        print('Nuova query calcolata')

    #Cmc e mAP
    results = [len(set(query_id)), query_id]
    k_n_cmc_mAP = [k, n, vettori_cmc, mAP_list]
    results.append([k_n_cmc_mAP])

    #Solo i ranks
    results_ranks = [len(set(query_id)), query_id]
    k_n_ranks = [k, n, ranks]
    results_ranks.append([k_n_ranks])

    f = open(Dataset + '_test_complete_BQE_Similarity.pkl', 'wb')
    pickle.dump(results, f)
    f.close()

    f = open('Ranks-' + Dataset + '_test_complete_BQE_Similarity.pkl', 'wb')
    pickle.dump(results_ranks, f)
    f.close()
Exemple #2
0
def test300_BQE(Dataset):
    if Dataset == 'Duke':
        DirCNN = '..\\FeatureCNN\\DukeMTMC'
        DirBayes = '..\\Bayes_Duke_trained.pkl'
    elif Dataset == 'Market':
        DirCNN = '..\\FeatureCNN\\Market-1501'
        DirBayes = '..\\Bayes_Market_trained.pkl'
    else:
        print('ERRORE')

    print('START')

    #Feature CNN
    testData, queryData, trainingData = loadCNN(DirCNN)

    test_cams, test_feature, test_id, test_desc = testData
    query_cams, query_feature, query_id, query_desc = queryData
    train_cams, train_feature, train_id, train_desc = trainingData

    #Load BayesianModel gia addestrato
    Bayes = loadFile(DirBayes)

    print('TRAINING COMPLETE')

    gallery, gallery_id, gallery_cams = test_feature, test_id, test_cams
    query, query_id, query_cams = query_feature[0:300], query_id[
        0:300], query_cams[0:300]

    query_first = query

    print('START TEST')

    #Calcolo primo rank
    first_ranks_index, first_ranks_probability, first_ranks_label = calculateRanks(
        query, gallery, gallery_id, Bayes)

    #Calcolo la prima cmc
    first_cmc_vector = calculateCmcFromRanks(first_ranks_index,
                                             first_ranks_label, query_id,
                                             gallery_cams, query_cams)

    #Calcolo il primo mAP
    first_mAP = calculate_mAP(first_ranks_index, first_ranks_label, query_id,
                              gallery_cams, query_cams)

    n = 10
    results, results_Ranks = [], []

    risultatiTest = [len(set(query_id)), query_id]
    risultatiTest_Ranks = [len(set(query_id)), query_id]
    for k in [5, 15, 25, 35, 45, 55]:
        query = query_first
        ranks_index, ranks_probability, ranks_label = first_ranks_index, first_ranks_probability, first_ranks_label
        vettori_cmc, ranks, mAP_list = [], [], []

        ranks.append(first_ranks_index)
        vettori_cmc.append(first_cmc_vector)
        mAP_list.append(first_mAP)
        print(k)
        for i in range(n):
            query = queryExpansion(ranks_index,
                                   ranks_probability,
                                   gallery,
                                   query,
                                   k,
                                   soglia=0.5)
            print('Nuova query calcolata')

            ranks_index, ranks_probability, ranks_label = calculateRanks(
                query, gallery, gallery_id, Bayes)
            print('Ranks calcolato')
            ranks.append(ranks_index)

            #Calcolo la cmc
            cmc_vector = calculateCmcFromRanks(ranks_index, ranks_label,
                                               query_id, gallery_cams,
                                               query_cams)
            vettori_cmc.append(cmc_vector)

            #Calcolo mAP
            mAP = calculate_mAP(ranks_index, ranks_label, query_id,
                                gallery_cams, query_cams)
            mAP_list.append(mAP)

        k_n_cmc_mAP = [k, n, vettori_cmc, mAP_list]
        results.append(k_n_cmc_mAP)

        k_n_ranks = [k, n, ranks]
        results_Ranks.append(k_n_ranks)

        print('####################')
    risultatiTest.append(results)
    risultatiTest_Ranks.append(results_Ranks)

    f = open(Dataset + '_300pics_k_n_BQE.pkl', 'wb')
    pickle.dump(risultatiTest, f)
    f.close()

    f = open('Ranks-' + Dataset + '_300pics_k_n_BQE.pkl', 'wb')
    pickle.dump(risultatiTest_Ranks, f)
    f.close()