Exemple #1
0
def test_terminate_trainingjob(kfp_client, experiment_id, region,
                               sagemaker_client):
    test_file_dir = "resources/config/simple-mnist-training"
    download_dir = utils.mkdir(
        os.path.join(test_file_dir + "/generated_test_terminate"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    input_job_name = test_params["Arguments"]["job_name"] = (
        utils.generate_random_string(4) + "-terminate-job")

    run_id, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        60,
        "running",
    )
    print(
        f"Terminating run: {run_id} where Training job_name: {input_job_name}")
    kfp_client_utils.terminate_run(kfp_client, run_id)

    response = sagemaker_utils.describe_training_job(sagemaker_client,
                                                     input_job_name)
    assert response["TrainingJobStatus"] in ["Stopping", "Stopped"]

    utils.remove_dir(download_dir)
def test_workteamjob(
    kfp_client, experiment_id, region, sagemaker_client, test_file_dir
):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    workteam_name, workflow_json = create_workteamjob(
        kfp_client, experiment_id, region, sagemaker_client, test_file_dir, download_dir
    )

    outputs = {"sagemaker-private-workforce": ["workteam_arn"]}

    try:
        output_files = minio_utils.artifact_download_iterator(
            workflow_json, outputs, download_dir
        )

        response = sagemaker_utils.describe_workteam(sagemaker_client, workteam_name)

        # Verify WorkTeam was created in SageMaker
        assert response["Workteam"]["CreateDate"] is not None
        assert response["Workteam"]["WorkteamName"] == workteam_name

        # Verify WorkTeam arn artifact was created in Minio and matches the one in SageMaker
        workteam_arn = utils.read_from_file_in_tar(
            output_files["sagemaker-private-workforce"]["workteam_arn"]
        )
        assert response["Workteam"]["WorkteamArn"] == workteam_arn

    finally:
        # Cleanup the SageMaker Resources
        sagemaker_utils.delete_workteam(sagemaker_client, workteam_name)

    # Delete generated files only if the test is successful
    utils.remove_dir(download_dir)
Exemple #3
0
def test_transform_job(
    kfp_client,
    experiment_id,
    s3_client,
    sagemaker_client,
    s3_data_bucket,
    test_file_dir,
):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    # Generate random prefix for model, job name to avoid errors if resources with same name exists
    test_params["Arguments"]["model_name"] = test_params["Arguments"][
        "job_name"] = input_job_name = (utils.generate_random_string(5) + "-" +
                                        test_params["Arguments"]["model_name"])
    print(f"running test with model/job name: {input_job_name}")

    # Generate unique location for output since output filename is generated according to the content_type
    test_params["Arguments"]["output_location"] = os.path.join(
        test_params["Arguments"]["output_location"], input_job_name)

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    outputs = {"sagemaker-batch-transformation": ["output_location"]}

    output_files = minio_utils.artifact_download_iterator(
        workflow_json, outputs, download_dir)

    # Verify Job was successful on SageMaker
    response = sagemaker_utils.describe_transform_job(sagemaker_client,
                                                      input_job_name)
    assert response["TransformJobStatus"] == "Completed"
    assert response["TransformJobName"] == input_job_name

    # Verify output location from pipeline matches job output and that the transformed file exists
    output_location = utils.read_from_file_in_tar(
        output_files["sagemaker-batch-transformation"]["output_location"])
    print(f"output location: {output_location}")
    assert output_location == response["TransformOutput"]["S3OutputPath"]
    # Get relative path of file in S3 bucket
    # URI is following format s3://<bucket_name>/relative/path/to/file
    # split below is to extract the part after bucket name
    file_key = os.path.join("/".join(output_location.split("/")[3:]),
                            test_params["ExpectedOutputFile"])
    assert s3_utils.check_object_exists(s3_client, s3_data_bucket, file_key)

    utils.remove_dir(download_dir)
Exemple #4
0
 def remove_temp(self):
     try:
         utils.remove_dir(self.temp_dir)
         del self.temp_basename
         del self.temp_path
         del self.temp_dir
     except AttributeError:
         log.warning('%s file has not temporal version' % self.basename)
def test_create_endpoint(kfp_client, experiment_id, boto3_session,
                         sagemaker_client, test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    # Generate random prefix for model, endpoint config and endpoint name
    # to avoid errors if resources with same name exists
    test_params["Arguments"]["model_name"] = test_params["Arguments"][
        "endpoint_config_name"] = test_params["Arguments"][
            "endpoint_name"] = input_endpoint_name = (
                utils.generate_random_string(5) + "-" +
                test_params["Arguments"]["model_name"])
    print(f"running test with model/endpoint name: {input_endpoint_name}")

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    try:
        outputs = {"sagemaker-deploy-model": ["endpoint_name"]}

        output_files = minio_utils.artifact_download_iterator(
            workflow_json, outputs, download_dir)

        output_endpoint_name = utils.read_from_file_in_tar(
            output_files["sagemaker-deploy-model"]["endpoint_name"],
            "endpoint_name.txt")
        print(f"endpoint name: {output_endpoint_name}")

        # Verify output from pipeline is endpoint name
        assert output_endpoint_name == input_endpoint_name

        # Verify endpoint is running
        assert (sagemaker_utils.describe_endpoint(
            sagemaker_client,
            input_endpoint_name)["EndpointStatus"] == "InService")

        # Validate the model for use by running a prediction
        result = run_predict_mnist(boto3_session, input_endpoint_name,
                                   download_dir)
        print(f"prediction result: {result}")
        assert json.dumps(result, sort_keys=True) == json.dumps(
            test_params["ExpectedPrediction"], sort_keys=True)
        utils.remove_dir(download_dir)
    finally:
        # delete endpoint
        sagemaker_utils.delete_endpoint(sagemaker_client, input_endpoint_name)
def main():
    remove_dir("java_template")
    make_dirs("java_template")
    generate_template("original/java/train.4186.diff",
                      "java_template/train.4186.diff.new", "train")
    generate_template("original/java/test.436.diff",
                      "java_template/test.436.diff.new", "test")
    generate_template("original/java/valid.453.diff",
                      "java_template/valid.453.diff.new", "valid")
Exemple #7
0
def test_trainingjob(kfp_client, experiment_id, region, sagemaker_client,
                     test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    outputs = {
        "sagemaker-training-job":
        ["job_name", "model_artifact_url", "training_image"]
    }
    output_files = minio_utils.artifact_download_iterator(
        workflow_json, outputs, download_dir)

    # Verify Training job was successful on SageMaker
    training_job_name = utils.read_from_file_in_tar(
        output_files["sagemaker-training-job"]["job_name"])
    print(f"training job name: {training_job_name}")
    train_response = sagemaker_utils.describe_training_job(
        sagemaker_client, training_job_name)
    assert train_response["TrainingJobStatus"] == "Completed"

    # Verify model artifacts output was generated from this run
    model_artifact_url = utils.read_from_file_in_tar(
        output_files["sagemaker-training-job"]["model_artifact_url"])
    print(f"model_artifact_url: {model_artifact_url}")
    assert model_artifact_url == train_response["ModelArtifacts"][
        "S3ModelArtifacts"]
    assert training_job_name in model_artifact_url

    # Verify training image output is an ECR image
    training_image = utils.read_from_file_in_tar(
        output_files["sagemaker-training-job"]["training_image"])
    print(f"Training image used: {training_image}")
    if "ExpectedTrainingImage" in test_params.keys():
        assert test_params["ExpectedTrainingImage"] == training_image
    else:
        assert f"dkr.ecr.{region}.amazonaws.com" in training_image

    assert not argo_utils.error_in_cw_logs(
        workflow_json["metadata"]["name"]
    ), "Found the CloudWatch error message in the log output. Check SageMaker to see if the job has failed."

    utils.remove_dir(download_dir)
Exemple #8
0
def test_workteamjob(
    kfp_client, experiment_id, region, sagemaker_client, test_file_dir
):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))

    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        )
    )

    # Generate random prefix for workteam_name to avoid errors if resources with same name exists
    test_params["Arguments"]["team_name"] = workteam_name = (
        utils.generate_random_string(5) + "-" + test_params["Arguments"]["team_name"]
    )

    try:
        workflow_json = create_workteamjob(
            kfp_client,
            test_params,
            experiment_id,
            region,
            sagemaker_client,
            download_dir,
        )

        outputs = {"sagemaker-private-workforce": ["workteam_arn"]}

        output_files = minio_utils.artifact_download_iterator(
            workflow_json, outputs, download_dir
        )

        response = sagemaker_utils.describe_workteam(sagemaker_client, workteam_name)

        # Verify WorkTeam was created in SageMaker
        assert response["Workteam"]["CreateDate"] is not None
        assert response["Workteam"]["WorkteamName"] == workteam_name

        # Verify WorkTeam arn artifact was created in Minio and matches the one in SageMaker
        workteam_arn = utils.read_from_file_in_tar(
            output_files["sagemaker-private-workforce"]["workteam_arn"]
        )
        assert response["Workteam"]["WorkteamArn"] == workteam_arn

    finally:
        workteams = sagemaker_utils.list_workteams(sagemaker_client)["Workteams"]
        workteam_names = list(map((lambda x: x["WorkteamName"]), workteams))
        # Check workteam was successfully created
        if workteam_name in workteam_names:
            sagemaker_utils.delete_workteam(sagemaker_client, workteam_name)

    # Delete generated files only if the test is successful
    utils.remove_dir(download_dir)
Exemple #9
0
def create_dataset(file_type, folder, train_diffs, train_msgs, test_diffs,
                   test_msgs, valid_diffs, valid_msgs):

    (train_diffs, train_msgs, train_cnt, vocab_diffs,
     vocab_msgs) = get_dataset(file_type, train_diffs, train_msgs)
    test_diffs, test_msgs, test_cnt, _, _ = get_dataset(
        file_type, test_diffs, test_msgs)
    valid_diffs, valid_msgs, valid_cnt, _, _ = get_dataset(
        file_type, valid_diffs, valid_msgs)

    remove_dir(folder)
    make_dirs(folder)

    save_dataset(folder, "train." + str(train_cnt), train_diffs, train_msgs)
    save_dataset(folder, "test." + str(test_cnt), test_diffs, test_msgs)
    save_dataset(folder, "valid." + str(valid_cnt), valid_diffs, valid_msgs)
    save_vocab(folder, vocab_diffs, vocab_msgs)
Exemple #10
0
def train_batch(symbols_file, data_path, export_dir):
    '''prep data for training'''
    # read from symbols file
    symbols = []
    with open(format_path(symbols_file), 'r') as data:
        read_data = data.read()
        symbols = str(read_data).split()

    for symbol in symbols:
        print('training neural network model for ' + symbol)
        train_data = pd.read_csv(format_path(data_path + '/train/' + symbol + '.csv'), index_col='date')
        test_data = pd.read_csv(format_path(data_path + '/test/' + symbol + '.csv'), index_col='date')

        model_dir = format_path(export_dir + '/' + symbol)
        remove_dir(model_dir)
        train(train_data, test_data, format_path(model_dir))

        print('training finished for ' + symbol)
Exemple #11
0
    def _create_deployment(repo_url, branch):
        # create temp folder
        prefix = '{0}_'.format(time.strftime("%Y%m%d"))
        temp_build_folder = tempfile.mkdtemp(prefix=prefix)

        try:
            # clone git repo
            logger.info('Cloning repo..')
            clone_folder = os.path.join(temp_build_folder, 'repo')
            repo_path = utils.clone_repo(repo_url,
                                         destination=clone_folder,
                                         branch=branch)
            faaspot_folder = os.path.join(repo_path, FAASPOT_FOLDER)
            faaspot_config = os.path.join(faaspot_folder, 'faaspot.yml')
            logger.debug('Repo cloned to: {0}'.format(clone_folder))

            # prepare deployment folder
            logger.debug('Creating deployment folder..')
            deployment_folder = os.path.join(temp_build_folder, 'deploy')
            utils.makedir(deployment_folder)
            logger.debug(
                'Deployment folder created: {0}'.format(deployment_folder))

            # copy modules from faaspot folder to the deployment folder
            logger.info('Copying config files into deployment folder..')
            utils.copy_files(faaspot_folder, deployment_folder)

            # build package into the deployment folder
            logger.info('Installing dependencies..')
            utils.install_libraries(repo_path, deployment_folder)

            # create a zip from the
            logger.info('Packaging it..')
            deployment_zip = os.path.join(temp_build_folder, 'deploy.zip')
            utils.zip_dir(deployment_folder, deployment_zip)
            logger.info('Zip file created: {0}'.format(deployment_zip))

            yield Deployment(repo_path, faaspot_config, deployment_zip)
        finally:
            utils.remove_dir(temp_build_folder)
Exemple #12
0
def test_createmodel(kfp_client, experiment_id, sagemaker_client,
                     test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    # Generate random prefix for model name to avoid errors if model with same name exists
    test_params["Arguments"]["model_name"] = input_model_name = (
        utils.generate_random_string(5) + "-" +
        test_params["Arguments"]["model_name"])
    print(f"running test with model_name: {input_model_name}")

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    outputs = {"sagemaker-create-model": ["model_name"]}

    output_files = minio_utils.artifact_download_iterator(
        workflow_json, outputs, download_dir)

    output_model_name = utils.read_from_file_in_tar(
        output_files["sagemaker-create-model"]["model_name"])
    print(f"model_name: {output_model_name}")
    assert output_model_name == input_model_name
    assert (sagemaker_utils.describe_model(sagemaker_client, input_model_name)
            is not None)

    utils.remove_dir(download_dir)
Exemple #13
0
    def __download_submission(self, subm, path):
        user_id = subm['class'][0][4:]
        username = subm.find(class_='cell c2').a.contents[0]
        timestamp = self.__parse_timestamp(
            subm.find(class_='cell c7').contents[0])

        subm_path = os.path.join(path, 'user_' + user_id)
        subm_data = Submission(user_id, username, timestamp, subm_path)

        utils.remove_dir(subm_path)
        utils.make_dir(subm_path)
        for f in subm.find_all(class_='fileuploadsubmission'):
            name = f.a.contents[0]
            link = f.a['href']
            if not self.__download_file(link, os.path.join(subm_path, name)):
                self.__logger.warning('Can not download file `{}\', ' \
                        'skip submission [user_id={}, username=`{}\', timestamp={}]'.format(
                        subm_data.user_id, subm_data.username, subm_data.timestamp))
                return None
            else:
                self.__logger.info('Got file `{}\' ' \
                        '[user_id={}, username=`{}\', timerstamp={}]'.format(name,
                        subm_data.user_id, subm_data.username, subm_data.timestamp))
        return subm_data
Exemple #14
0
def clear_all():

    result = {"success": True, "message": "sucessfully cleared!"}

    try:
        utils.remove_dir(config.OUT_EVALS_DIR)
        utils.remove_dir(config.OUT_PLOT_DIR)
        utils.remove_dir(config.OUT_IOU_DIR)
        # call corresponding function in calc
        # result = getattr(calculate, section)(global_data)
        # utils.printFlaskMsg(str(result["message"]['norm']))
    except:
        utils.printFlaskMsg("Unexpected error:")
        errorMsg = traceback.format_exc()
        utils.printFlaskMsg(errorMsg)
        return jsonify({"success": False, "message": errorMsg})
        # raise

    result["trace"] = getTraceBack()
    return jsonify(result)
track_selection = project_config["tracks"]
chataigne_base_path = project_config["chataigneProjectPath"]
start_time = project_config["startTime"]

all_configs.update({ltp_path: project_config})

time_shift = -start_time
tracks = create_tracks(ltp, time_shift)
tracks = filter_by_name(tracks, track_selection)
tracks = add_dmx_channels(tracks, track_selection)

if len(tracks) > 0:
    converter = ChataigneProject(tracks, chataigne_base_path)
    exported_json = converter.generate_projects_json()

    path = f"{output_path}/{project_name}.noisette"

    with open("%s" % path, 'w') as f:
        f.write(exported_json)

    print("Exported to " + path)

# save cache
save_cache(ltp_path, all_configs)

# cleanup
remove_dir(tmp_path)

print("All done.")
Exemple #16
0
def test_processingjob(kfp_client, experiment_id, region, sagemaker_client,
                       test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    # Generate random prefix for job name to avoid errors if model with same name exists
    test_params["Arguments"]["job_name"] = input_job_name = (
        utils.generate_random_string(5) + "-" +
        test_params["Arguments"]["job_name"])
    print(f"running test with job_name: {input_job_name}")

    for index, output in enumerate(test_params["Arguments"]["output_config"]):
        if "S3Output" in output:
            test_params["Arguments"]["output_config"][index]["S3Output"][
                "S3Uri"] = os.path.join(output["S3Output"]["S3Uri"],
                                        input_job_name)

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    outputs = {"sagemaker-processing-job": ["job_name", "output_artifacts"]}
    output_files = minio_utils.artifact_download_iterator(
        workflow_json, outputs, download_dir)

    # Verify Processing job was successful on SageMaker
    processing_job_name = utils.read_from_file_in_tar(
        output_files["sagemaker-processing-job"]["job_name"])
    print(f"processing job name: {processing_job_name}")
    process_response = sagemaker_utils.describe_processing_job(
        sagemaker_client, processing_job_name)
    assert process_response["ProcessingJobStatus"] == "Completed"
    assert process_response["ProcessingJobArn"].split("/")[1] == input_job_name

    # Verify processing job produced the correct outputs
    processing_outputs = json.loads(
        utils.read_from_file_in_tar(
            output_files["sagemaker-processing-job"]["output_artifacts"], ))
    print(
        f"processing job outputs: {json.dumps(processing_outputs, indent = 2)}"
    )
    assert processing_outputs is not None

    for output in process_response["ProcessingOutputConfig"]["Outputs"]:
        assert processing_outputs[
            output["OutputName"]] == output["S3Output"]["S3Uri"]

    assert not argo_utils.error_in_cw_logs(
        workflow_json["metadata"]["name"]
    ), "Found the CloudWatch error message in the log output. Check SageMaker to see if the job has failed."

    utils.remove_dir(download_dir)
def test_hyperparameter_tuning(kfp_client, experiment_id, region,
                               sagemaker_client, test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    test_params["Arguments"]["channels"] = json.dumps(
        test_params["Arguments"]["channels"])
    test_params["Arguments"]["static_parameters"] = json.dumps(
        test_params["Arguments"]["static_parameters"])
    test_params["Arguments"]["integer_parameters"] = json.dumps(
        test_params["Arguments"]["integer_parameters"])
    test_params["Arguments"]["categorical_parameters"] = json.dumps(
        test_params["Arguments"]["categorical_parameters"])

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    outputs = {
        "sagemaker-hyperparameter-tuning": [
            "best_hyperparameters",
            "best_job_name",
            "hpo_job_name",
            "model_artifact_url",
            "training_image",
        ]
    }
    output_files = minio_utils.artifact_download_iterator(
        workflow_json, outputs, download_dir)

    # Verify HPO job was successful on SageMaker
    hpo_job_name = utils.read_from_file_in_tar(
        output_files["sagemaker-hyperparameter-tuning"]["hpo_job_name"],
        "hpo_job_name.txt",
    )
    print(f"HPO job name: {hpo_job_name}")
    hpo_response = sagemaker_utils.describe_hpo_job(sagemaker_client,
                                                    hpo_job_name)
    assert hpo_response["HyperParameterTuningJobStatus"] == "Completed"

    # Verify training image output is an ECR image
    training_image = utils.read_from_file_in_tar(
        output_files["sagemaker-hyperparameter-tuning"]["training_image"],
        "training_image.txt",
    )
    print(f"Training image used: {training_image}")
    if "ExpectedTrainingImage" in test_params.keys():
        assert test_params["ExpectedTrainingImage"] == training_image
    else:
        assert f"dkr.ecr.{region}.amazonaws.com" in training_image

    # Verify Training job was part of HPO job, returned as best and was successful
    best_training_job_name = utils.read_from_file_in_tar(
        output_files["sagemaker-hyperparameter-tuning"]["best_job_name"],
        "best_job_name.txt",
    )
    print(f"best training job name: {best_training_job_name}")
    train_response = sagemaker_utils.describe_training_job(
        sagemaker_client, best_training_job_name)
    assert train_response["TuningJobArn"] == hpo_response[
        "HyperParameterTuningJobArn"]
    assert (train_response["TrainingJobName"] ==
            hpo_response["BestTrainingJob"]["TrainingJobName"])
    assert train_response["TrainingJobStatus"] == "Completed"

    # Verify model artifacts output was generated from this run
    model_artifact_url = utils.read_from_file_in_tar(
        output_files["sagemaker-hyperparameter-tuning"]["model_artifact_url"],
        "model_artifact_url.txt",
    )
    print(f"model_artifact_url: {model_artifact_url}")
    assert model_artifact_url == train_response["ModelArtifacts"][
        "S3ModelArtifacts"]
    assert best_training_job_name in model_artifact_url

    # Verify hyper_parameters output is not empty
    hyper_parameters = json.loads(
        utils.read_from_file_in_tar(
            output_files["sagemaker-hyperparameter-tuning"]
            ["best_hyperparameters"],
            "best_hyperparameters.txt",
        ))
    print(
        f"HPO best hyperparameters: {json.dumps(hyper_parameters, indent = 2)}"
    )
    assert hyper_parameters is not None

    utils.remove_dir(download_dir)
def _cleanup_temp_files():
    utils.remove_dir(args.BACKUP_GIT_WORKING_DIR)
    utils.remove_dir(args.SECRET_GIT_WORKING_DIR)
    utils.remove_file(args.temp_ssh_file)
    utils.remove_file(args.temp_cert_file)
Exemple #19
0
def test_create_endpoint(kfp_client, experiment_id, boto3_session,
                         sagemaker_client, test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    # Generate random prefix for model, endpoint config and endpoint name
    # to avoid errors if resources with same name exists
    test_params["Arguments"]["model_name"] = test_params["Arguments"][
        "endpoint_config_name"] = test_params["Arguments"][
            "endpoint_name"] = input_endpoint_name = (
                utils.generate_random_string(5) + "-" +
                test_params["Arguments"]["model_name"])

    try:
        print(f"running test with model/endpoint name: {input_endpoint_name}")

        _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
            kfp_client,
            experiment_id,
            test_params["PipelineDefinition"],
            test_params["Arguments"],
            download_dir,
            test_params["TestName"],
            test_params["Timeout"],
        )

        outputs = {"sagemaker-deploy-model": ["endpoint_name"]}

        output_files = minio_utils.artifact_download_iterator(
            workflow_json, outputs, download_dir)

        output_endpoint_name = utils.read_from_file_in_tar(
            output_files["sagemaker-deploy-model"]["endpoint_name"])
        print(f"endpoint name: {output_endpoint_name}")

        # Verify output from pipeline is endpoint name
        assert output_endpoint_name == input_endpoint_name

        # Verify endpoint is running
        assert (sagemaker_utils.describe_endpoint(
            sagemaker_client,
            input_endpoint_name)["EndpointStatus"] == "InService")
        # Verify that the update was successful by checking that InstanceType changed
        if "ExpectedInstanceType" in test_params.keys():
            new_endpoint_config_name = sagemaker_utils.describe_endpoint(
                sagemaker_client, input_endpoint_name)["EndpointConfigName"]
            response = sagemaker_utils.describe_endpoint_config(
                sagemaker_client, new_endpoint_config_name)
            prod_variant = response["ProductionVariants"][0]
            print(f"Production Variant item: {prod_variant}")
            instance_type = prod_variant["InstanceType"]
            print(f"Production Variant item InstanceType: {instance_type}")
            assert instance_type == test_params["ExpectedInstanceType"]

        # Validate the model for use by running a prediction
        result = run_predict_mnist(boto3_session, input_endpoint_name,
                                   download_dir)
        print(f"prediction result: {result}")
        assert json.dumps(result, sort_keys=True) == json.dumps(
            test_params["ExpectedPrediction"], sort_keys=True)
        utils.remove_dir(download_dir)
    finally:
        endpoints = sagemaker_utils.list_endpoints(
            sagemaker_client, name_contains=input_endpoint_name)["Endpoints"]
        endpoint_names = list(map((lambda x: x["EndpointName"]), endpoints))
        # Check endpoint was successfully created
        if input_endpoint_name in endpoint_names:
            sagemaker_utils.delete_endpoint(sagemaker_client,
                                            input_endpoint_name)
Exemple #20
0
def test_groundtruth_labeling_job(kfp_client, experiment_id, region,
                                  sagemaker_client, test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    # Verify the GroundTruthJob was created in SageMaker and is InProgress.
    # TODO: Add a bot to complete the labeling job and check for completion instead.
    try:
        workteam_name, workteam_arn = create_initial_workteam(
            kfp_client,
            experiment_id,
            region,
            sagemaker_client,
            "resources/config/create-workteam",
            download_dir,
        )

        test_params["Arguments"]["workteam_arn"] = workteam_arn

        # Generate the ground_truth_train_job_name based on the workteam which will be used for labeling.
        test_params["Arguments"][
            "ground_truth_train_job_name"] = ground_truth_train_job_name = (
                test_params["Arguments"]["ground_truth_train_job_name"] +
                "-by-" + workteam_name)

        run_id, _, _ = kfp_client_utils.compile_run_monitor_pipeline(
            kfp_client,
            experiment_id,
            test_params["PipelineDefinition"],
            test_params["Arguments"],
            download_dir,
            test_params["TestName"],
            test_params["Timeout"],
            test_params["StatusToCheck"],
        )

        response = sagemaker_utils.describe_labeling_job(
            sagemaker_client, ground_truth_train_job_name)
        assert response["LabelingJobStatus"] == "InProgress"

        # Verify that the workteam has the specified labeling job
        labeling_jobs = sagemaker_utils.list_labeling_jobs_for_workteam(
            sagemaker_client, workteam_arn)
        assert len(labeling_jobs["LabelingJobSummaryList"]) == 1
        assert (labeling_jobs["LabelingJobSummaryList"][0]["LabelingJobName"]
                == ground_truth_train_job_name)

        # Test terminate functionality
        print(
            f"Terminating run: {run_id} where GT job_name: {ground_truth_train_job_name}"
        )
        kfp_client_utils.terminate_run(kfp_client, run_id)
        response = sagemaker_utils.describe_labeling_job(
            sagemaker_client, ground_truth_train_job_name)
        assert response["LabelingJobStatus"] in ["Stopping", "Stopped"]
    finally:
        # Check if terminate failed, and stop the labeling job
        labeling_jobs = sagemaker_utils.list_labeling_jobs_for_workteam(
            sagemaker_client, workteam_arn)
        if len(labeling_jobs["LabelingJobSummaryList"]) > 0:
            sagemaker_utils.stop_labeling_job(sagemaker_client,
                                              ground_truth_train_job_name)

        # Cleanup the workteam
        workteams = sagemaker_utils.list_workteams(
            sagemaker_client)["Workteams"]
        workteam_names = list(map((lambda x: x["WorkteamName"]), workteams))
        if workteam_name in workteam_names:
            sagemaker_utils.delete_workteam(sagemaker_client, workteam_name)

    # Delete generated files
    utils.remove_dir(download_dir)
Exemple #21
0
def test_ok():
    bin_path = '../build/bin/logs'
    logs_dir = '/tmp/log_dir'
    files_number = 10
    threads_number = 10
    result_dir = '/tmp/res_dir'
    test_result_dir = '/tmp/test_res'
    file_lines_number = 100000

    fact_names = ['fact_name' + str(i) for i in range(1, 100)]
    utils.make_dir(logs_dir)

    timer = monotonic()

    result = {}
    for i in range(file_lines_number):
        entry = utils.Entry(randrange(1600560000, 1601424000),
                            choice(fact_names), 111222,
                            [randrange(1, 1000) for i in range(10)])
        with open(logs_dir + '/file1.log', 'a') as file:
            file.write(str(entry) + '\n')

        dt = str(datetime.utcfromtimestamp(entry.ts_fact).date())
        if dt not in result:
            result[dt] = {}
        if entry.fact_name not in result[dt]:
            result[dt][entry.fact_name] = []
        result[dt][entry.fact_name].append({
            'props': entry.props,
            'count': files_number
        })

    for i in range(2, files_number + 1):
        copyfile(logs_dir + '/file1.log', logs_dir + '/file' + str(i) + '.log')

    print('generation time:', monotonic() - timer)
    timer = monotonic()

    utils.make_dir(test_result_dir)
    with open(test_result_dir + '/agr.txt', 'w') as file:
        file.write(json.dumps(utils.order_dict(result)))

    print('result writing time:', monotonic() - timer)
    timer = monotonic()

    ret = subprocess.run([
        bin_path, logs_dir,
        str(files_number),
        str(threads_number), result_dir
    ])
    assert ret.returncode == 0, ret.stderr

    print('application running time:', monotonic() - timer)

    with open(result_dir + '/agr.txt') as file:
        res_content = file.read()
    with open(test_result_dir + '/agr.txt', 'r') as file:
        test_res_content = file.read()

    assert res_content == test_res_content

    utils.remove_dir(logs_dir)
    utils.remove_dir(result_dir)
    utils.remove_dir(test_result_dir)
Exemple #22
0
def run(min_pings_init=30, min_pings_split=20, min_dist=2.0):
    """
    Runs feature generation that allows modeling stage to take place.
    Feature generation involves 3 main stages:
        - generating a sample to show the model
        - breaking sample up into trajectories
        - computing quantitative features on each trajectory
        - writing an image of each trajectory to folders grouped by 'vessel_type'

    :param min_pings_init: int
        The minimum number of AIS data points that must appear in a trajectory for it to be
        included in the sample.
    :param min_pings_split: int
        Applied after splitting trajectories at the gap. Should be smaller than min_pings_init.
        Ensures that split trajectories also have more than a certain minimum number of pings.

    :returns:
        None
    """
    start = time.time()
    # Set environment variables
    settings.load()
    # Get PostgreSQL database credentials
    psql_credentials = settings.get_psql()
    base_dir = settings.get_base_dir()
    sql_dir = base_dir.joinpath('sql')
    data_dir = settings.get_data_dir()

    # Create SQLAlchemy engine from database credentials
    engine = create_connection_from_dict(psql_credentials, 'postgresql')
    # Create a sql table with complete trajectories
    sample_switch = input("Create new sample for Convolutional Neural Net? (Y/N)")
    if sample_switch in ['Y', 'y', '1', 'Yes']:
        print("Creating CNN sample.")
        create_cnn_sample(sql_dir, engine, min_pings_init=min_pings_init, min_dist=min_dist)
    # Get data to process from postgres
    execute_sql('drop table if exists features.quants;', engine, read_file=False)
    if (data_dir / 'trajectories').is_dir():
        print("Removing old trajectories directory.")
        remove_dir(data_dir / 'trajectories')

    try:
        df = execute_sql("select * from features.cnn_sample", engine, read_file=False, return_df=True)
        print("Grabbing trajectory data")
    except db.exc.ProgrammingError:
        print("The table features.cnn_sample doesn't exist. Please create one.")
        raise SystemExit

    # Set data types of several key columns
    df = df.rename(columns={'time_stamp': 't'})
    df['t'] = pd.to_datetime(df['t'])
    df['longitude'] = pd.to_numeric(df['longitude'])
    df['latitude'] = pd.to_numeric(df['latitude'])
    # Set df index
    df.index = df['t']
    df_geo = df_to_geodf(df)
    # Filter by date and mmsi
    df_group = df_geo.groupby([pd.Grouper(freq='D'), 'mmsi'])
    # Loop through the grouped dataframes
    counter = 0

    # Load basemap shape file
    base_map = geopandas.read_file(
        '/Akamai/ais_project_data/GSHHS_shp/c/GSHHS_c_L1.shp')  # c: coarse, l: low, i: intermedate, h: high, f: full
    # Set CRS WGS 84
    base_map = base_map.to_crs(epsg=4326)

    for name, group in df_group:
        if len(group) < min_pings_init:
            continue
        trajectory = mp.Trajectory(name, group)

        # Split the trajectory at the gap
        split_trajectories = list(trajectory.split_by_observation_gap(timedelta(minutes=30)))

        ### CREATE TRAJECTORY IDs
        for split_index, trajectory in enumerate(split_trajectories):
            # create a universal trajectory ID
            # format is: mmsi-date-split_index
            trajectory.df['traj_id'] = str(name[1]) + '-' + str(name[0].date()) + '-' + str(split_index)

        ### CREATE QUANT FEATURES AND WRITE IMAGES TO DISK

        for split in split_trajectories:
            # store the length of the split trajectory in km
            traj_length = split.get_length() / 1_000
            if (len(split.df) < min_pings_split) or (traj_length < .5):
                print(f"Dropping a trajectory with length: {str(traj_length)} km and {str(len(split.df))} pings.")
                continue
            else:
                try:
                    quants = compute_quants(split.df[['longitude', 'latitude']])
                    quants['traj_id'] = str(split.df['traj_id'].iloc[0])
                    quants['vessel_type'] = str(split.df['vessel_type'].iloc[0])
                    quants.to_sql('quants', engine, schema='features',
                                  if_exists='append', index=False)
                    ### WRITE IMAGES TO DISK
                    save_matplotlib_img(split, data_dir, base_map)
                    counter += 1
                except:
                    print(f"An error occurred processing trajectory {split.df['traj_id'].iloc[0]}.")

    end = time.time()
    print(f"Generated features for {str(counter)} images in {str(round(end - start))} seconds.")
    return
Exemple #23
0
def test_groundtruth_labeling_job(kfp_client, experiment_id, region,
                                  sagemaker_client, test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        ))

    # First create a workteam using a separate pipeline and get the name, arn of the workteam created.
    workteam_name, _ = create_workteamjob(
        kfp_client,
        experiment_id,
        region,
        sagemaker_client,
        "resources/config/create-workteam",
        download_dir,
    )

    test_params["Arguments"][
        "workteam_arn"] = workteam_arn = sagemaker_utils.get_workteam_arn(
            sagemaker_client, workteam_name)

    # Generate the ground_truth_train_job_name based on the workteam which will be used for labeling.
    test_params["Arguments"][
        "ground_truth_train_job_name"] = ground_truth_train_job_name = (
            test_params["Arguments"]["ground_truth_train_job_name"] + "-by-" +
            workteam_name)

    _ = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
        test_params["StatusToCheck"],
    )

    # Verify the GroundTruthJob was created in SageMaker and is InProgress.
    # TODO: Add a bot to complete the labeling job and check for completion instead.
    try:
        response = sagemaker_utils.describe_labeling_job(
            sagemaker_client, ground_truth_train_job_name)
        assert response["LabelingJobStatus"] == "InProgress"

        # Verify that the workteam has the specified labeling job
        labeling_jobs = sagemaker_utils.list_labeling_jobs_for_workteam(
            sagemaker_client, workteam_arn)
        assert len(labeling_jobs["LabelingJobSummaryList"]) == 1
        assert (labeling_jobs["LabelingJobSummaryList"][0]["LabelingJobName"]
                == ground_truth_train_job_name)
    finally:
        # Cleanup the SageMaker Resources
        sagemaker_utils.stop_labeling_job(sagemaker_client,
                                          ground_truth_train_job_name)
        sagemaker_utils.delete_workteam(sagemaker_client, workteam_name)

    # Delete generated files
    utils.remove_dir(download_dir)
Exemple #24
0
def main():
    if main_repo_url is None or sub_repos is None:
        config_error()

    old_wd = os.getcwd()
    print utils.blue('Initialising merging dir '+merger_dir)
    utils.remove_dir(merger_dir)
    utils.ensure_dir(merger_dir)
    os.chdir(merger_dir)

    main_repo_name = utils.get_repo_name(main_repo_url)
    main_repo_dir = os.path.join(merger_dir, main_repo_name)
    print utils.blue('\nCloning main repo ' + main_repo_name)
    call(['git', 'clone', main_repo_url])
    print ''
    for sub_repo in sub_repos:
        sub_repo_name = utils.get_repo_name(sub_repo['url'])
        sub_repo_dir = os.path.join(merger_dir, sub_repo_name)

        print utils.blue('Merging sub-repo ' + sub_repo_name + ' into main repo ' + main_repo_name)
        print utils.blue('>Cloning sub-repo ' + sub_repo_name)
        call(['git', 'clone', sub_repo['url']])
        os.chdir(sub_repo_dir)

        print utils.blue('>Looking for files to delete')
        if files_to_delete is not None and files_to_delete:
            files = os.listdir(sub_repo_dir)
            for f in files:
                for ftd in files_to_delete:
                    if (ftd.startswith('*') and f.endswith(ftd.split('*')[1])) or (not ftd.startswith('*') and f == ftd):
                        file_path = os.path.join(sub_repo_dir, f)
                        utils.remove_file(file_path)
                        print utils.blue('>>File ' + file_path + ' deleted')

        files = os.listdir(sub_repo_dir)
        files.remove('.git')
        destination_dir = os.path.join(sub_repo_dir, sub_repo['dir'])
        print utils.blue('>Directory ' + destination_dir + ' created')
        utils.ensure_dir(destination_dir)
        for f in files:
            call(['git', 'mv', f, sub_repo['dir']])
            print utils.blue('>>File/dir ' + f + ' moved into ' + sub_repo['dir'])

        call(['git', 'add', '-A'])
        call(['git', 'commit', '-m', 'Merging '+sub_repo_name+' into '+main_repo_name])
        print utils.blue('>Changes committed in sub-repo')

        os.chdir(main_repo_dir)
        print utils.blue('>Adding remote '+sub_repo_name)
        call(['git', 'remote', 'add', sub_repo_name, sub_repo_dir])
        print utils.blue('>Fetching remote '+sub_repo_name)
        call(['git', 'fetch', sub_repo_name])
        print utils.blue('>Merging '+sub_repo_name+' into '+main_repo_name)
        call(['git', 'merge', '--allow-unrelated-histories', '--no-edit', sub_repo_name+'/master'])
        print utils.blue('>Removing remote '+sub_repo_name)
        call(['git', 'remote', 'remove', sub_repo_name])
        print utils.blue('>Sub-repo '+sub_repo_name+' merged into main repo '+main_repo_name)

        os.chdir(merger_dir)
        print ''

    os.chdir(main_repo_dir)
    push = None
    while push is None:
        push = utils.yes_no_input('Do you want to push the merged main repo '+main_repo_name+' to remote', 'y')
    if push:
        call(['git', 'push'])

    remote_delete = None
    while remote_delete is None:
        remote_delete = utils.yes_no_input('Do you want to delete the remote sub-repos', 'n')
    if remote_delete:
        for sub_repo in sub_repos:
            sub_repo_name = utils.get_repo_name(sub_repo['url'])
            print '\tTODO: delete here remote repo '+sub_repo_name+'. Not yet implemented, does nothing for now.'
            # TODO: see https://developer.github.com/v3/repos/#delete-a-repository

    clean = None
    while clean is None:
        clean = utils.yes_no_input('Do you want to delete the merging dir '+merger_dir+' and all its content', 'y')
    if clean:
        utils.remove_dir(merger_dir)

    os.chdir(old_wd)
Exemple #25
0
    # Note that the entire row is the value here
    all_dupes = ais_bounded.map(lambda x: ((x[0], x[1]), x))
    # Group by row values, dropping duplicates
    ais_deduped = all_dupes.reduceByKey(lambda x, y: x) \
        .map(lambda x: x[1])
    #ais_deduped = all_dupes.distinct()
    ais_with_dupes.unpersist()
    print("Rows in deduped data: ", ais_deduped.count())


    def toCSVLine(data):
        return '\t'.join(str(d) for d in data)


    lines = ais_deduped.map(toCSVLine)

    deduped_path = Path('/Akamai/ais_project_data/ais_deduped')
    save_path = deduped_path.joinpath(monthly_dir.name)
    #save_path = deduped_path.joinpath('2019Sep')

    if save_path.is_dir():
        remove_dir(save_path)

    print(save_path.parts)

    lines.saveAsTextFile(str(save_path.resolve()))

    end = datetime.datetime.now()

    print("Runtime: ", end - start)
def save_subtitle_file(download_dir, temp_file_path):
    dir_path, name_list = unzip_file(temp_file_path)
    success, file_path = move_subtitle_to_download_dir(
        dir_path, name_list, download_dir, SUBTITLE_FILE_EXTENSION)
    remove_dir(dir_path)
    return success, file_path