def __init__(self, extention, args):
        output_filename = utils.root_path() + _filename_pattern() + extention

        self._args = [utils.exe_path('7za'), 'a', output_filename]
        self._args += args
        self._args.append('*')

        self._work_dir = tempfile.mkdtemp(prefix='', dir=utils.temp_path())

        try:
            os.remove(output_filename)
        except OSError:
            pass
Exemple #2
0
    def __init__(self,
                 params_path,
                 build_model,
                 load_data=load_data,
                 train=True,
                 batch_size=200,
                 learning_rate=1e-2,
                 validate_rate=0.2,
                 epochs=10):
        self.params_path = utils.root_path(params_path)
        self.load_data = load_data
        self.train = train
        self.batch_size = batch_size
        self.validate_rate = validate_rate
        self.epochs = epochs

        self.model = build_model()
        self.compile_model(learning_rate)

        # load train params if exists
        self.load_weights()
Exemple #3
0
# coding=utf-8
import os
import cv2
import utils
import imutils
import numpy as np
from PIL import Image
from v1.classifier import FaceClassifier

IMAGE_PATH = utils.root_path('doc/images/test2.jpg')
PREDICTION_POSTFIX = '_prediction'
SAVE_PREDICTION = True
PROB_THRESHOLD = 0.5

if __name__ == '__main__':
    classifier = FaceClassifier()
    target_W = utils.IM_WIDTH
    target_H = utils.IM_HEIGHT
    im = Image.open(IMAGE_PATH)
    im = np.array(im)
    faces = utils.detect_faces(im)

    if len(faces):
        xs, ls = [], []
        for (x, y, w, h) in faces:
            face = im[y: y + h, x: x + w, :]
            face = imutils.resize(face, target_W, target_H)
            if face.shape[0] == target_H and face.shape[1] == target_W:
                xs.append(face)
                ls.append((x, y + 5 if y < 20 else y - 5))
        prediction = classifier.predict(np.array(xs))
Exemple #4
0
def _configure():
    # hard-coded seed helps to have predictable generated names
    random.seed(31337)

    # set current directory to project's root directory
    # in order to make build process portable and self-contained,
    # and to do not store anything in current or user's home/temp directories
    os.chdir(utils.root_path())

    try:
        os.mkdir(utils.cache_path())
    except OSError:
        pass

    rarfile.UNRAR_TOOL = utils.exe_path('unrar')

    parser = argparse.ArgumentParser()

    # Generic arguments
    parser.add_argument('-v',
                        '--verbosity',
                        type=int,
                        choices=range(0, 4),
                        default=0,
                        help='set output verbosity level')
    parser.add_argument('--disable-optimization',
                        help='disable WAD files optimization',
                        action='store_true')
    parser.add_argument('-c',
                        '--compression',
                        type=str,
                        choices=['none', 'default', 'pk3', '7zpk3', 'pk7'],
                        help='set output file compression')
    parser.add_argument('-p',
                        '--profiling',
                        help='enable Python performance profiling',
                        action='store_true')

    # Operational mode arguments
    parser.add_argument(
        '--zdoomed-souls',
        help='build ZDoomed Souls instead of An Awesome Awesomeness',
        action='store_true')
    parser.add_argument(
        '--check-repo-update',
        help='look for new assets in web repository instead of '
        ' building a package',
        action='store_true')
    parser.add_argument(
        '--clean-asset-cache',
        help='delete cached assets instead of building a package',
        action='store_true')
    parser.add_argument('-d',
                        '--dry-run',
                        help='do all build steps but do not write a package',
                        action='store_true')
    parser.add_argument(
        '-s',
        '--single',
        type=int,
        default=0,
        help='build only one repository asset specified by its index')

    # Patching-related arguments
    parser.add_argument('--allow-set-pitch',
                        help='allow A_SetPitch() calls in DECORATE',
                        action='store_true')
    parser.add_argument('--allow-class-replacement',
                        help='allow class replacement in DECORATE',
                        action='store_true')
    parser.add_argument(
        '--allow-doomednum',
        help='allow editor number (DoomEdNum) assignment in DECORATE',
        action='store_true')
    parser.add_argument('--png-sprites',
                        help='convert all sprites to PNG format',
                        action='store_true')
    parser.add_argument('--png-sprites-compression',
                        type=int,
                        choices=[value for value in range(-1, 10)],
                        default=-1,
                        help='set compression level for sprites in PNG format')

    args = parser.parse_args()

    patching.verbosity_level = args.verbosity
    patching.allow_set_pitch = args.allow_set_pitch
    patching.allow_class_replacement = args.allow_class_replacement
    patching.allow_doomednum = args.allow_doomednum
    patching.enable_optimization = not args.disable_optimization
    patching.png_sprites = args.png_sprites
    patching.png_sprites_compression = args.png_sprites_compression

    if args.zdoomed_souls:
        utils.set_mode(utils.MODE_ZDS)

    return args
# all modules are in the lib directory
sys.path[0] = os.path.dirname(os.path.abspath(__file__)) + '/../lib'

import doomwad

from case_insensitive import CaseInsensitiveDict
from iwad_lumps import *
from iwad_actors import ACTORS_ALL
from iwad_sndinfo import LOGICAL_SOUNDS_ALL
from iwad_brightmaps import BRIGHTMAPS_ALL
from patching import (actor_stateful_pattern, actor_stateless_pattern,
                      actor_header_regex)
import utils

pk3_filename = utils.root_path() + 'realm667-aaa.pk3'

excluded_lump_names = [
    # lumps
    'ANIMDEFS',
    'DECALDEF',
    'DECORATE',
    'GLDEFS',
    'KEYCONF',
    'LANGUAGE',
    'LOADACS',
    'LOCKDEFS',
    'SNDINFO',
    'TEXTURES',

    # GLDEFS aliases
Exemple #6
0
            train_generator,
            steps_per_epoch=steps_per_epoch,
            callbacks=[ModelCheckpoint(self.weights_path)],
            epochs=self.epoch)
        # self.model.fit(x, y, batch_size=32, epochs=self.epoch)

    def evaluate(self, x, y):
        return self.model.evaluate(x, y, batch_size=32)

    def predict(self, x, standard=True):
        if standard:
            x = x / 255.
        return self.model.predict(x)


PATH_TRAIN = utils.root_path('data/love/roles')
PATH_VAL = utils.root_path('data/love/roles')
# 是否训练
TRAIN = True
# 是否验证
VALIDATE = False

if __name__ == '__main__':
    print('Init model.')
    classifier = FaceClassifier(lr=1e-2, epoch=50)
    if TRAIN:
        print('Train model.')
        classifier.train(PATH_TRAIN, classes=utils.NAMES)

    if VALIDATE:
        names, index2name, name2index = utils.parse_name()
Exemple #7
0
class FaceClassifier:
    weights_path = utils.root_path('v1/weights/weights.h5')

    def __init__(self, weight_path=None, lr=1e-2, epoch=30):
        if weight_path is not None:
            self.weights_path = weight_path
        self.epoch = epoch
        self.model = self.build_model()
        self.compile_model(lr)

    def build_model(self):
        model = Sequential()
        model.add(
            Conv2D(8, (3, 3),
                   activation='relu',
                   input_shape=(utils.IM_HEIGHT, utils.IM_WIDTH, 3)))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))
        model.add(Conv2D(16, (3, 3), activation='relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))
        model.add(Flatten())
        model.add(Dense(256, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(8, activation='softmax'))
        return model

    def compile_model(self, lr):
        sgd = SGD(lr=lr, decay=1e-6, momentum=0.9, nesterov=True)
        self.model.compile(loss='categorical_crossentropy', optimizer=sgd)
        if os.path.exists(self.weights_path):
            self.model.load_weights(self.weights_path)
            print('Load weights.h5 successfully.')
        else:
            print('Model params not found.')

    def train(self, train_dir, classes=None, batch_size=32):
        file_num = utils.calculate_file_num(train_dir)
        steps_per_epoch = file_num // batch_size
        print('steps number is %d every epoch.' % steps_per_epoch)
        train_data_gen = ImageDataGenerator(rescale=1. / 255,
                                            shear_range=0.2,
                                            zoom_range=0.2,
                                            horizontal_flip=True)

        train_generator = train_data_gen.flow_from_directory(
            train_dir,
            classes=classes,
            target_size=(utils.IM_WIDTH, utils.IM_HEIGHT),
            batch_size=batch_size,
            class_mode='categorical')

        utils.ensure_dir(os.path.dirname(self.weights_path))
        self.model.fit_generator(
            train_generator,
            steps_per_epoch=steps_per_epoch,
            callbacks=[ModelCheckpoint(self.weights_path)],
            epochs=self.epoch)
        # self.model.fit(x, y, batch_size=32, epochs=self.epoch)

    def evaluate(self, x, y):
        return self.model.evaluate(x, y, batch_size=32)

    def predict(self, x, standard=True):
        if standard:
            x = x / 255.
        return self.model.predict(x)
Exemple #8
0
# coding=utf-8
import cv2
import utils
import imutils
import numpy as np

from v1.classifier import FaceClassifier

# VIDEO_PATH = u'E:/Youku Files/transcode/爱情公寓 第一季 06_超清.mp4'
# SEEK = 2.5985e6

VIDEO_PATH = u'/Users/zijiao/Desktop/love1_3.mp4'
PATH_WRITE = utils.root_path('result.mp4')
SEEK = 2.6005e6

PROB_THRESHOLD = 0.5
CLASSIFY = True
SHOW_VIDEO = True
WRITE_VIDEO = False

if __name__ == '__main__':

    # cap = cv2.VideoCapture(0)
    cap = cv2.VideoCapture(VIDEO_PATH)
    cap.set(0, SEEK)

    width = int(cap.get(3))
    height = int(cap.get(4))
    fps = 24  # 视频帧率

    # 指定写视频的格式, I420-avi, MJPG-mp4
 def sign_up(total_count, needed_count):
     dict_path = os.path.join(utils.root_path(), 'english.txt')
     seed = utils.get_seed(dict_path, 12)
     keys = shamir.crypto_keys(needed_count, total_count, seed)
     WalletManager.create_wallet(seed.encode())
     return keys
Exemple #10
0
                    continue
                index = np.argmax(prediction[0])
                subdir = utils.NAMES_EN[index]
                save_path = os.path.join(CLASSIFY_PATH, subdir)
        utils.ensure_dir(save_path)
        final_path = os.path.join(save_path, file_name)
        cv2.imwrite(final_path, face)
        # print('File %s saved.' % file_name)
    return im


# 读取视频路径
# PATH_VIDEO = u'E:/Youku Files/transcode/爱情公寓 第一季 10_超清.mp4'
PATH_VIDEO = u'/Users/zijiao/Desktop/love1_3.mp4'
# 普通模式保存路径
PATH_SAVE = utils.root_path('data/love/images')
# 分类模式保存路径
CLASSIFY_PATH = utils.root_path('data/love/predict')
# seek位置
SEEK = 2.6005e6
# 识别阈值(0.0 ~ 1.0)
FACE_MIN = 0.0
FACE_MAX = 1.0
# 是否保存图片
SAVE_IMAGE = True
# 是否自动分类
CLASSIFY = True
# 每隔多少帧进行采样
STRIDES = 1
# 是否显示画面
SHOW_CONTENT = False
Exemple #11
0
# Standard Library
from sys import stdout
import argparse
import logging
from os.path import abspath, basename, dirname, relpath
from typing import List
from time import strftime

# My Code
from markov_chars import generate as genc
from markov_chunks import generate as genw
from utils import root_path

output_file: str = root_path(
    'generated',
    f"{strftime('%H:%M:%S#%y-%m-%d')}.txt",
)

parser = argparse.ArgumentParser(description='Generate prose.',
                                 prog=basename(dirname(abspath(__file__))))

parser.add_argument('--lookbehind',
                    '-n',
                    metavar='INT',
                    type=int,
                    nargs='?',
                    default=6,
                    choices=tuple(range(1, 20)),
                    required=False,
                    help='max length of lookbehind ngrams')
parser.add_argument('--length',
Exemple #12
0
from PyQt5.QtWidgets import QApplication
import sys
import os

import utils
from app import Application

if __name__ == "__main__":
    icon_path = os.path.join(utils.root_path(), 'icons', 'appicon.png')
    app = QApplication(sys.argv)
    window = Application('DCG', utils.qml_path(), icon_path)
    window.setSource('main.qml')
    window.setup_gui_and_connect_base_signals()
    window.load_state()
    window.show()
    app.exec()
    window.save_state()