def train(net, opt, trainBatcher, validBatcher, saver, minContext):
    while True:
        start = time.time()

        #Run epochs
        trainLoss, trainAcc = utils.runData(net,
                                            opt,
                                            trainBatcher,
                                            trainable=True,
                                            verbose=True)
        validLoss, validAcc = utils.runData(net,
                                            opt,
                                            validBatcher,
                                            minContext=minContext)
        trainLoss, validLoss = np.exp(trainLoss), np.exp(validLoss)

        #Print statistics
        print('\nEpoch: ', saver.epoch(), ', Time: ', time.time() - start)
        print('| Train Perp: ', trainLoss, ', Train Acc: ', trainAcc)
        print('| Valid Perp: ', validLoss, ', Valid Acc: ', validAcc)

        if np.isnan(validLoss) or np.isnan(trainLoss):
            print('Got a bad update. Resetting epoch')
            saver.refresh(net)
        else:
            saver.update(net, trainLoss, trainAcc, validLoss, validAcc)
Exemple #2
0
def runToScore(model, dataset, data_paths, n=-1):
    '''
    Runs on n many train data and returns the score and the resultant image
    _______
    In:
    model: The model being used
    dataset: The ProbaVDataset
    data_paths:  List of paths of the train dataset
    
    Out:
    scores:  The scores vs the baseline
    results:  The resultant images
    '''

    scores = []
    results = []
    model.to(device)
    model.eval()
    if n < 0:
        n = len(dataset)
    counter = 0
    for d, _, _ in dataset:
        if counter < n:
            result = runData(model, d)
            score = score_image(result, data_paths[counter])
            scores.append(score)
            results.append(result)
            counter += 1
        else:
            break
    return scores, results
Exemple #3
0
def predictTest(model_file):
    model = torch.load(model_file).to(device)
    data_paths = all_scenes_paths(path_to_test)
    dataset = pd.ProbaVDataset(data_paths, True)
    images = []
    model.eval()
    for d in dataset:
        images.append(runData(model, d))
    return images
def test(net, batcher, minContext, name='Test'):
    start = time.time()

    loss, acc = utils.runData(net, None, batcher, minContext=minContext)
    loss = np.exp(loss)

    #Print statistics
    print('Time: ', time.time() - start)
    print(name, ' Perp: ', loss, ', Acc: ', acc)
Exemple #5
0
        self.som[mask] += self.alpha * update[...,None][mask]*self.diff[mask]
        self.som[self.som > 1] = 1
        self.som[self.som < 0] = 0

    def updateLearnParams(self):
        '''
        Update the learning parameters for the next iteration.
        '''
        self.curIter += 1
        self.alpha = self.alphaInit * exp(-self.curIter/self.delta)
        omega = self.r * exp(-self.curIter/self.delta)
        self.omega2 = omega * omega

if __name__ == '__main__':
    from matplotlib import pyplot as pp
    from matplotlib import animation as ani
    from utils import runData, simpleView

    colors = array([[0,0,0],
                    [1,0,0],
                    [0,1,0],
                    [0,0,1],
                    [1,0,1],
                    [1,1,0],
                    [0,1,1],
                    [1,1,1]])

    som = SOM(3,shape=(20,20,20))
    runData(som, colors, 1000)
    simpleView(som, shape=(1,1), color=True)