Exemple #1
0
def plot_AlexNet(data, demonstration, changepoints = None, plotter = None, labels = None, end_frame = 1000000, interactive_mode = False, plot_pca = False, plot_tsne = False):

	# list_of_layers = ["conv3", "conv4", "pool5"]

	list_of_layers = ["pool5"]

	PATH_TO_ANNOTATION = constants.PATH_TO_DATA + constants.ANNOTATIONS_FOLDER + demonstration + "_" + str(constants.CAMERA) + ".p"
	annotations = pickle.load(open(PATH_TO_ANNOTATION, "rb"))

	for layer in list_of_layers:
		[X_pca, X_tsne, X_grp] = data[layer]

		X_pca = utils.sample_matrix(X_pca, 2)
		X_tsne = utils.sample_matrix(X_tsne, 2)

		print "AlexNet", layer, X_tsne.shape

		if plot_pca:
			plot_scatter_continous(X_pca, "plot_AlexNet_PCA" + layer+ "_" + str(start)+"_"+str(end),
				colormap_name = colormap_name, changepoints = changepoints, labels = labels, plotter = plotter, end_frame = end_frame, interactive_mode = interactive_mode)
		if plot_tsne:
			if interactive_mode:
				plot_scatter_continous(X_tsne, "plot_AlexNet_tSNE" + layer + "_" + str(end_frame),
					colormap_name = colormap_name, changepoints = changepoints, labels = labels, plotter = plotter, end_frame = end_frame, interactive_mode = interactive_mode)
			else:
				plot_scatter_continous(X_tsne, "plot_AlexNet_tSNE" + layer + "_" + str(start) + "_" + str(end), colormap_name = colormap_name, changepoints = changepoints, labels = labels, plotter = plotter, end_frame = end_frame, interactive_mode = interactive_mode)
Exemple #2
0
def featurize_1(list_of_demonstrations, kinematics, sr):
	"""
	Given .p (pickle) files of sift features, this function concatenates
	Z with W vectors to produce X vector, dumped as pickle file.
	"""
	print "FEATURIZATION 1"

	data_X_1 = {}
	data_X_2 = {}
	for demonstration in list_of_demonstrations:
		print "SIFT for ", demonstration
		start, end = utils.get_start_end_annotations(constants.PATH_TO_DATA + constants.ANNOTATIONS_FOLDER
						+ demonstration + "_" + constants.CAMERA +".p")

		W = kinematics[demonstration]
		W_sampled = utils.sample_matrix(W, sampling_rate = sr)


		PATH_TO_SIFT = constants.PATH_TO_DATA + "sift_FCED/SIFT_"+ demonstration
		Z = pickle.load(open(PATH_TO_SIFT + "_1.p", "rb"))
		Z = Z[start:end + 1]
		Z_sampled_1 = utils.sample_matrix(Z, sampling_rate = sr)

		Z = pickle.load(open(PATH_TO_SIFT + "_2.p", "rb"))
		Z = Z[start:end + 1]
		Z_sampled_2 = utils.sample_matrix(Z, sampling_rate = sr)

		assert Z_sampled_1.shape[0] == W_sampled.shape[0]
		assert Z_sampled_2.shape[0] == W_sampled.shape[0]

		data_X_1[demonstration] = np.concatenate((W_sampled, Z_sampled_1), axis = 1)
		data_X_2[demonstration] = np.concatenate((W_sampled, Z_sampled_2), axis = 1)

	pickle.dump(data_X_1, open(PATH_TO_FEATURES + "SIFT_1.p", "wb"))
	pickle.dump(data_X_2, open(PATH_TO_FEATURES + "SIFT_2.p", "wb"))
	def construct_features_kinematics(self):
		"""
		Independently loads/sets-up the kinematics in self.data_W.
		"""
		for demonstration in self.list_of_demonstrations:
			W = utils.sample_matrix(utils.get_kinematic_features(demonstration), sampling_rate = self.sr)
			scaler = preprocessing.StandardScaler().fit(W)
			self.data_W[demonstration] = scaler.transform(W)
Exemple #4
0
def plot_SIFT(data, demonstration, changepoints = None, plotter = None, labels = None, end_frame = 1000000, interactive_mode = False, plot_pca = False, plot_tsne = False):

	[X_pca, X_tsne] = data
	X_pca = utils.sample_matrix(X_pca, 6)
	X_tsne = utils.sample_matrix(X_tsne, 6)

	print "SIFT", X_tsne.shape

	PATH_TO_ANNOTATION = constants.PATH_TO_DATA + constants.ANNOTATIONS_FOLDER + demonstration + "_" + str(constants.CAMERA) + ".p"
	annotations = pickle.load(open(PATH_TO_ANNOTATION, "rb"))
	# labels = utils.get_chronological_sequences(annotations)

	if plot_pca:
		plot_scatter_continous(X_pca, "plot_SIFT_PCA" + "_" + str(start) + "_" + str(end),
			colormap_name = colormap_name, changepoints = changepoints, labels = labels, plotter = plotter)
	if plot_tsne:
		plot_scatter_continous(X_tsne, "plot_SIFT_tSNE" + "_" + str(start) + "_" + str(end),
			colormap_name = colormap_name, changepoints = changepoints, labels = labels, plotter = plotter, end_frame = end_frame, interactive_mode = interactive_mode)
Exemple #5
0
    def construct_features_kinematics(self):
        """
		Independently loads/sets-up the kinematics in self.data_W.
		"""
        for demonstration in self.list_of_demonstrations:
            W = utils.sample_matrix(
                utils.get_kinematic_features(demonstration),
                sampling_rate=self.sr)
            scaler = preprocessing.StandardScaler().fit(W)
            self.data_W[demonstration] = scaler.transform(W)
	def construct_features_kinematics(self):
		"""
		Loads kinematic features (saved in text files) and populates
		self.data_X dictionary
		"""

		for demonstration in self.list_of_demonstrations:
			W = utils.sample_matrix(utils.get_kinematic_features(demonstration), sampling_rate = self.sr)
			scaler = preprocessing.StandardScaler().fit(W)
			self.data_X[demonstration] = scaler.transform(W)
			print "Kinematics ", demonstration, self.data_X[demonstration].shape
	def construct_features_kinematics(self):
		"""
		Loads kinematic features (saved in text files) and populates
		self.data_X dictionary
		"""

		for demonstration in self.list_of_demonstrations:
			W = utils.sample_matrix(parser.get_kinematic_features(demonstration), sampling_rate = self.sr)
			scaler = preprocessing.StandardScaler().fit(W)
			self.data_X[demonstration] = scaler.transform(W)
			print "Kinematics ", demonstration, self.data_X[demonstration].shape
Exemple #8
0
def featurize_1(list_of_demonstrations, kinematics, sr):
    """
	Given .p (pickle) files of sift features, this function concatenates
	Z with W vectors to produce X vector, dumped as pickle file.
	"""
    print "FEATURIZATION 1"

    data_X_1 = {}
    data_X_2 = {}
    for demonstration in list_of_demonstrations:
        print "SIFT for ", demonstration
        start, end = utils.get_start_end_annotations(
            constants.PATH_TO_DATA + constants.ANNOTATIONS_FOLDER +
            demonstration + "_" + constants.CAMERA + ".p")

        W = kinematics[demonstration]
        W_sampled = utils.sample_matrix(W, sampling_rate=sr)

        PATH_TO_SIFT = constants.PATH_TO_DATA + "sift_FCED/SIFT_" + demonstration
        Z = pickle.load(open(PATH_TO_SIFT + "_1.p", "rb"))
        Z = Z[start:end + 1]
        Z_sampled_1 = utils.sample_matrix(Z, sampling_rate=sr)

        Z = pickle.load(open(PATH_TO_SIFT + "_2.p", "rb"))
        Z = Z[start:end + 1]
        Z_sampled_2 = utils.sample_matrix(Z, sampling_rate=sr)

        assert Z_sampled_1.shape[0] == W_sampled.shape[0]
        assert Z_sampled_2.shape[0] == W_sampled.shape[0]

        data_X_1[demonstration] = np.concatenate((W_sampled, Z_sampled_1),
                                                 axis=1)
        data_X_2[demonstration] = np.concatenate((W_sampled, Z_sampled_2),
                                                 axis=1)

    pickle.dump(data_X_1, open(PATH_TO_FEATURES + "SIFT_1.p", "wb"))
    pickle.dump(data_X_2, open(PATH_TO_FEATURES + "SIFT_2.p", "wb"))
Exemple #9
0
def featurize_cnn_features_no_kinematics(list_of_demonstrations,
                                         layer,
                                         folder,
                                         feature_index,
                                         net,
                                         sr=3,
                                         config=[True, False, True]):

    # For config params [x,y,z] refers to perform PCA, CCA and GRP respectively

    data_X_PCA = {}
    data_X_GRP = {}

    big_Z = None

    # Initialization
    demonstration_size = {}
    init_demonstration = list_of_demonstrations[0]
    big_Z = utils.sample_matrix(load_cnn_features(init_demonstration, layer,
                                                  folder, net),
                                sampling_rate=sr)
    demonstration_size[init_demonstration] = big_Z.shape[0]

    for demonstration in list_of_demonstrations[1:]:
        print "Loading Visual Features for ", demonstration
        Z = load_cnn_features(demonstration, layer, folder, net)
        Z_sampled = utils.sample_matrix(Z, sampling_rate=sr)

        big_Z = np.concatenate((big_Z, Z_sampled), axis=0)
        demonstration_size[demonstration] = Z_sampled.shape[0]

    PC = min(100, min(demonstration_size.values()))

    if config[0]:
        big_Z_pca = utils.pca_incremental(big_Z, PC=PC)

    if config[2]:
        big_Z_grp = utils.grp(big_Z)

    start = 0
    end = 0

    import matlab
    import matlab.engine as mateng

    eng = mateng.start_matlab()

    for demonstration in list_of_demonstrations:

        size = demonstration_size[demonstration]
        end = start + size

        # ------------- PCA -------------
        if config[0]:
            Z = big_Z_pca[start:end]
            data_X_PCA[demonstration] = Z

        # ------------- GRP -------------
        if config[2]:
            Z = big_Z_grp[start:end]
            data_X_GRP[demonstration] = Z

        start += size

    if config[0]:
        pickle.dump(
            data_X_PCA,
            open(PATH_TO_FEATURES + str(feature_index) + "_PCA.p", "wb"))

    if config[2]:
        pickle.dump(
            data_X_GRP,
            open(PATH_TO_FEATURES + str(feature_index) + "_GRP.p", "wb"))
Exemple #10
0
def featurize_cnn_features(list_of_demonstrations,
                           kinematics,
                           layer,
                           folder,
                           feature_index,
                           net,
                           sr=3,
                           config=[True, False, False],
                           C=100):

    # For config params [x,y,z] refers to perform PCA, CCA and GRP respectively

    data_X_PCA = {}
    data_X_CCA = {}
    data_X_GRP = {}

    big_Z = None

    # Initialization
    demonstration_size = {}
    init_demonstration = list_of_demonstrations[0]
    big_Z = utils.sample_matrix(load_cnn_features(init_demonstration, layer,
                                                  folder, net),
                                sampling_rate=sr)
    demonstration_size[init_demonstration] = big_Z.shape[0]

    kinematics_sampled = {}
    kinematics_sampled[init_demonstration] = utils.sample_matrix(
        kinematics[init_demonstration], sampling_rate=sr)

    dimensions_of_PCA = demonstration_size[init_demonstration]

    for demonstration in list_of_demonstrations[1:]:
        print "Loading Visual Features for ", demonstration
        Z = load_cnn_features(demonstration, layer, folder, net)
        Z_sampled = utils.sample_matrix(Z, sampling_rate=sr)
        print "Sampled visual", Z.shape, Z_sampled.shape

        dimensions_of_PCA += Z_sampled.shape[0]

        big_Z = np.concatenate((big_Z, Z_sampled), axis=0)
        demonstration_size[demonstration] = Z_sampled.shape[0]

        kinematics_sampled[demonstration] = utils.sample_matrix(
            kinematics[demonstration], sampling_rate=sr)
        print "Sampled kinematics", kinematics_sampled[demonstration].shape

        print "PCA # of rows: ", dimensions_of_PCA

    PC = min(C, min(demonstration_size.values()))
    print "XXXX - PC:", str(PC)

    # Quick check to see if kinematics and visual features are aligned
    for demonstration in list_of_demonstrations:
        print demonstration_size[demonstration], kinematics_sampled[
            demonstration].shape[0]
        assert demonstration_size[demonstration] == kinematics_sampled[
            demonstration].shape[0]

    if config[0]:
        big_Z_pca = utils.pca_incremental(big_Z, PC=PC)

    if config[2]:
        big_Z_grp = utils.grp(big_Z)

    start = 0
    end = 0

    import matlab
    import matlab.engine as mateng

    eng = mateng.start_matlab()

    for demonstration in list_of_demonstrations:

        W = kinematics_sampled[demonstration]

        size = demonstration_size[demonstration]
        end = start + size

        # ------------- PCA -------------
        if config[0]:
            Z = big_Z_pca[start:end]
            X = np.concatenate((W, Z), axis=1)
            data_X_PCA[demonstration] = X

        # ------------- CCA -------------
        if config[1]:
            Z = big_Z[start:end]
            Z = utils.cca(W, Z)
            X = np.concatenate((W, Z), axis=1)
            data_X_CCA[demonstration] = X

        # ------------- GRP -------------
        if config[2]:
            Z = big_Z_grp[start:end]
            X = np.concatenate((W, Z), axis=1)
            data_X_GRP[demonstration] = X

        start += size

    if config[0]:
        pickle.dump(
            data_X_PCA,
            open(PATH_TO_FEATURES + str(feature_index) + "_PCA.p", "wb"))

    if config[1]:
        pickle.dump(
            data_X_CCA,
            open(PATH_TO_FEATURES + str(feature_index) + "_CCA.p", "wb"))

    if config[2]:
        pickle.dump(
            data_X_GRP,
            open(PATH_TO_FEATURES + str(feature_index) + "_GRP.p", "wb"))
Exemple #11
0
def featurize_LCD_VLAD(list_of_demonstrations,
                       kinematics,
                       layer,
                       net_name,
                       folder,
                       dimensions,
                       batch_size,
                       fname,
                       config=[True, True, True]):
    M = dimensions[0]
    a = dimensions[1]

    print "Featurizing LCD + VLAD: ", layer, net_name, folder, M, a, batch_size

    BATCH_SIZE = batch_size

    if constants.SIMULATION:
        BATCH_SIZE = 5

    data_X_PCA = {}
    data_X_CCA = {}
    data_X_GRP = {}

    size_sampled_matrices = [
        utils.sample_matrix(kinematics[demo],
                            sampling_rate=BATCH_SIZE).shape[0]
        for demo in list_of_demonstrations
    ]
    PC = min(100, min(size_sampled_matrices))
    print "PC: ", PC

    for demonstration in list_of_demonstrations:
        print demonstration
        W = kinematics[demonstration]
        Z = load_cnn_features(demonstration, layer, folder, net_name)
        W_new = utils.sample_matrix(W, sampling_rate=BATCH_SIZE)

        Z_batch = None
        W_batch = None
        j = 1

        Z_new = None

        IPython.embed()

        PATH_TO_ANNOTATION = constants.PATH_TO_DATA + constants.ANNOTATIONS_FOLDER + demonstration + "_" + str(
            constants.CAMERA) + ".p"
        start, end = utils.get_start_end_annotations(PATH_TO_ANNOTATION)

        Z = []

        IPython.embed()

        for i in range(Z):

            vector_W = W[i]
            W_batch = utils.safe_concatenate(W_batch, vector_W)

            vector_Z = Z[i]
            vector_Z = vector_Z.reshape(M, a, a)
            vector_Z = lcd.LCD(vector_Z)
            Z_batch = utils.safe_concatenate(Z_batch, vector_Z)

            if (j == BATCH_SIZE):
                print "NEW BATCH", str(i)
                Z_batch_VLAD = encoding.encode_VLAD(Z_batch)
                Z_new = utils.safe_concatenate(Z_new, Z_batch_VLAD)

                # Re-initialize batch variables
                j = 0
                Z_batch = None
                W_batch = None

            j += 1

        # tail case
        if Z_batch is not None:
            print "TAIL CASE"
            print "NEW BATCH", str(i)
            Z_batch_VLAD = encoding.encode_VLAD(Z_batch)
            Z_new = utils.safe_concatenate(Z_new, Z_batch_VLAD)

        if config[0]:
            Z_new_pca = utils.pca_incremental(Z_new, PC=PC)
            print Z_new_pca.shape
            assert W_new.shape[0] == Z_new_pca.shape[0]
            X_PCA = np.concatenate((W_new, Z_new_pca), axis=1)
            data_X_PCA[demonstration] = X_PCA

        if config[1]:
            Z_new_cca = utils.cca(W_new, Z_new)
            print Z_new_cca.shape
            assert W_new.shape[0] == Z_new_cca.shape[0]
            X_CCA = np.concatenate((W_new, Z_new_cca), axis=1)
            data_X_CCA[demonstration] = X_CCA

        if config[2]:
            Z_new_grp = utils.grp(Z_new)
            print Z_new_grp.shape
            assert W_new.shape[0] == Z_new_grp.shape[0]
            X_GRP = np.concatenate((W_new, Z_new_grp), axis=1)
            data_X_GRP[demonstration] = X_GRP

    if config[0]:
        pickle.dump(data_X_PCA,
                    open(PATH_TO_FEATURES + fname + "_PCA" + ".p", "wb"))
    if config[1]:
        pickle.dump(data_X_CCA,
                    open(PATH_TO_FEATURES + fname + "_CCA" + ".p", "wb"))
    if config[2]:
        pickle.dump(data_X_GRP,
                    open(PATH_TO_FEATURES + fname + "_GRP" + ".p", "wb"))
Exemple #12
0
def featurize_cnn_features_no_kinematics(list_of_demonstrations, layer, folder, feature_index, net, sr = 3, config = [True, False, True]):

	# For config params [x,y,z] refers to perform PCA, CCA and GRP respectively

	data_X_PCA = {}
	data_X_GRP = {}

	big_Z = None

	# Initialization
	demonstration_size = {}
	init_demonstration = list_of_demonstrations[0]
	big_Z = utils.sample_matrix(load_cnn_features(init_demonstration, layer, folder, net), sampling_rate = sr)
	demonstration_size[init_demonstration] = big_Z.shape[0]

	for demonstration in list_of_demonstrations[1:]:
		print "Loading Visual Features for ", demonstration
		Z = load_cnn_features(demonstration, layer, folder, net)
		Z_sampled = utils.sample_matrix(Z, sampling_rate = sr)

		big_Z = np.concatenate((big_Z, Z_sampled), axis = 0)
		demonstration_size[demonstration] = Z_sampled.shape[0]

	PC = min(100, min(demonstration_size.values()))

	if config[0]:
		big_Z_pca = utils.pca_incremental(big_Z, PC = PC)

	if config[2]:
		big_Z_grp = utils.grp(big_Z)

	start = 0
	end = 0

	import matlab
	import matlab.engine as mateng

	eng = mateng.start_matlab()

	for demonstration in list_of_demonstrations:

		size = demonstration_size[demonstration]
		end = start + size

		# ------------- PCA ------------- 
		if config[0]:
			Z = big_Z_pca[start:end]
			data_X_PCA[demonstration] = Z

		# ------------- GRP -------------
		if config[2]:
			Z = big_Z_grp[start:end]
			data_X_GRP[demonstration] = Z
		
		start += size

	if config[0]:
		pickle.dump(data_X_PCA, open(PATH_TO_FEATURES + str(feature_index) + "_PCA.p", "wb"))

	if config[2]:
		pickle.dump(data_X_GRP, open(PATH_TO_FEATURES + str(feature_index) + "_GRP.p", "wb"))
Exemple #13
0
def featurize_cnn_features(list_of_demonstrations, kinematics, layer, folder, feature_index, net, sr = 3, config = [True, False, False], C = 100):

	# For config params [x,y,z] refers to perform PCA, CCA and GRP respectively

	data_X_PCA = {}
	data_X_CCA = {}
	data_X_GRP = {}

	big_Z = None

	# Initialization
	demonstration_size = {}
	init_demonstration = list_of_demonstrations[0]
	big_Z = utils.sample_matrix(load_cnn_features(init_demonstration, layer, folder, net), sampling_rate = sr)
	demonstration_size[init_demonstration] = big_Z.shape[0]

	kinematics_sampled = {}
	kinematics_sampled[init_demonstration] = utils.sample_matrix(kinematics[init_demonstration], sampling_rate = sr)

	dimensions_of_PCA = demonstration_size[init_demonstration]

	for demonstration in list_of_demonstrations[1:]:
		print "Loading Visual Features for ", demonstration
		Z = load_cnn_features(demonstration, layer, folder, net)
		Z_sampled = utils.sample_matrix(Z, sampling_rate = sr)
		print "Sampled visual", Z.shape, Z_sampled.shape

		dimensions_of_PCA += Z_sampled.shape[0]

		big_Z = np.concatenate((big_Z, Z_sampled), axis = 0)
		demonstration_size[demonstration] = Z_sampled.shape[0]

		kinematics_sampled[demonstration] = utils.sample_matrix(kinematics[demonstration], sampling_rate = sr)
		print "Sampled kinematics", kinematics_sampled[demonstration].shape

		print "PCA # of rows: ", dimensions_of_PCA

	PC = min(C, min(demonstration_size.values()))
	print "XXXX - PC:", str(PC)

	# Quick check to see if kinematics and visual features are aligned
	for demonstration in list_of_demonstrations:
		print demonstration_size[demonstration], kinematics_sampled[demonstration].shape[0]
		assert demonstration_size[demonstration] == kinematics_sampled[demonstration].shape[0]

	if config[0]:
		big_Z_pca = utils.pca_incremental(big_Z, PC = PC)

	if config[2]:
		big_Z_grp = utils.grp(big_Z)

	start = 0
	end = 0

	import matlab
	import matlab.engine as mateng

	eng = mateng.start_matlab()

	for demonstration in list_of_demonstrations:

		W = kinematics_sampled[demonstration]

		size = demonstration_size[demonstration]
		end = start + size

		# ------------- PCA ------------- 
		if config[0]:
			Z = big_Z_pca[start:end]
			X = np.concatenate((W, Z), axis = 1)
			data_X_PCA[demonstration] = X

		# ------------- CCA ------------- 
		if config[1]:
			Z = big_Z[start:end]
			Z = utils.cca(W, Z)
			X = np.concatenate((W, Z), axis = 1)
			data_X_CCA[demonstration] = X

		# ------------- GRP -------------
		if config[2]:
			Z = big_Z_grp[start:end]
			X = np.concatenate((W, Z), axis = 1)
			data_X_GRP[demonstration] = X
		
		start += size

	if config[0]:
		pickle.dump(data_X_PCA, open(PATH_TO_FEATURES + str(feature_index) + "_PCA.p", "wb"))

	if config[1]:
		pickle.dump(data_X_CCA, open(PATH_TO_FEATURES + str(feature_index) + "_CCA.p", "wb"))

	if config[2]:
		pickle.dump(data_X_GRP, open(PATH_TO_FEATURES + str(feature_index) + "_GRP.p", "wb"))
Exemple #14
0
def featurize_LCD_VLAD(list_of_demonstrations, kinematics, layer, net_name, folder, dimensions, batch_size, fname, config = [True, True, True]):
	M = dimensions[0]
	a = dimensions[1]

	print "Featurizing LCD + VLAD: ", layer, net_name, folder, M, a, batch_size

	BATCH_SIZE = batch_size

	if constants.SIMULATION:
		BATCH_SIZE = 5

	data_X_PCA = {}
	data_X_CCA = {}
	data_X_GRP = {}

	size_sampled_matrices = [utils.sample_matrix(kinematics[demo], sampling_rate = BATCH_SIZE).shape[0] for demo in list_of_demonstrations]
	PC = min(100, min(size_sampled_matrices))
	print "PC: ", PC

	for demonstration in list_of_demonstrations:
		print demonstration
		W = kinematics[demonstration]
		Z = load_cnn_features(demonstration, layer, folder, net_name)
		W_new = utils.sample_matrix(W, sampling_rate = BATCH_SIZE)

		Z_batch = None
		W_batch = None
		j = 1

		Z_new = None

		IPython.embed()

		PATH_TO_ANNOTATION = constants.PATH_TO_DATA + constants.ANNOTATIONS_FOLDER + demonstration + "_" + str(constants.CAMERA) + ".p"
		start, end = utils.get_start_end_annotations(PATH_TO_ANNOTATION)

		Z = []

		IPython.embed()

		for i in range(Z):

			vector_W = W[i]
			W_batch = utils.safe_concatenate(W_batch, vector_W)

			vector_Z = Z[i]
			vector_Z = vector_Z.reshape(M, a, a)
			vector_Z = lcd.LCD(vector_Z)
			Z_batch = utils.safe_concatenate(Z_batch, vector_Z)

			if (j == BATCH_SIZE):
				print "NEW BATCH", str(i)
				Z_batch_VLAD = encoding.encode_VLAD(Z_batch)
				Z_new = utils.safe_concatenate(Z_new, Z_batch_VLAD)

				# Re-initialize batch variables
				j = 0
				Z_batch = None
				W_batch = None

			j += 1

		# tail case
		if Z_batch is not None:
			print "TAIL CASE"
			print "NEW BATCH", str(i)
			Z_batch_VLAD = encoding.encode_VLAD(Z_batch)
			Z_new = utils.safe_concatenate(Z_new, Z_batch_VLAD)

		if config[0]:
			Z_new_pca = utils.pca_incremental(Z_new, PC = PC)
			print Z_new_pca.shape
			assert W_new.shape[0] == Z_new_pca.shape[0]
			X_PCA = np.concatenate((W_new, Z_new_pca), axis = 1)
			data_X_PCA[demonstration] = X_PCA

		if config[1]:
			Z_new_cca = utils.cca(W_new, Z_new)
			print Z_new_cca.shape
			assert W_new.shape[0] == Z_new_cca.shape[0]
			X_CCA = np.concatenate((W_new, Z_new_cca), axis = 1)
			data_X_CCA[demonstration] = X_CCA

		if config[2]:
			Z_new_grp = utils.grp(Z_new)
			print Z_new_grp.shape
			assert W_new.shape[0] == Z_new_grp.shape[0]
			X_GRP = np.concatenate((W_new, Z_new_grp), axis = 1)
			data_X_GRP[demonstration] = X_GRP

	if config[0]:
		pickle.dump(data_X_PCA, open(PATH_TO_FEATURES + fname + "_PCA" + ".p", "wb"))
	if config[1]:
		pickle.dump(data_X_CCA, open(PATH_TO_FEATURES + fname + "_CCA" + ".p", "wb"))
	if config[2]:
		pickle.dump(data_X_GRP, open(PATH_TO_FEATURES + fname + "_GRP" + ".p", "wb"))