Exemple #1
0
def parameter_importance():
    import parameter_importance as pi

    # find datasets to fill in the selector
    selections = utils.select_init_data(request.args.get("id", ""))
    dataset = selections["current_dataset"]
    # get parameters for this dataset
    (cols, low_var_cols) = pi.get_params(dataset)
    # rank parameters
    (rank1, _, rank2, scores) = pi.rank(dataset)
    # correlation analysis
    (rank0, correlation_plots) = pi.correlation_analysis(dataset)
    # plot
    scatter_plot = pi.scatter_plot(dataset, request.args.get("varx", rank1[0]), request.args.get("vary", rank1[1]))
    scores_plot = pi.rlasso_scores_plot(rank2, scores)
    return render_template(
        "parameter_importance.html",
        cols=cols,
        low_var_cols=low_var_cols.tolist(),
        selections=selections,
        scatter_plot=scatter_plot,
        scores_plot=scores_plot,
        correlation_plots=correlation_plots,
        rank0=rank0[:9],
        rank1=rank1[:9],
    )
Exemple #2
0
def initial_data():
    import initial_data

    # find datasets to fill in the selector
    selections = utils.select_init_data(request.args.get("id", ""))
    # do plots
    (low_var_cols, var_percent, correlation_plot, pca_plot) = initial_data.produce_plots(selections["current_dataset"])
    return render_template(
        "initial_data.html",
        selections=selections,
        correlation_plot=correlation_plot,
        low_var_cols=low_var_cols,
        var_percent=var_percent,
        pca_plot=pca_plot,
    )