def main(): # root_dir = '../../../AVA2.1/' # root_dir for the files root_dir = '../../data/AVA/files/' # Erase previous models from GPU memory K.clear_session() # Load list of action classes and separate them classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training params = { 'dim': (224, 224), 'batch_size': 32, 'n_classes': len(classes['label_id']), 'n_channels': 3, 'shuffle': False, 'nb_epochs': 200, 'model': 'inceptionv3', 'email': True, 'freeze_all': True, 'conv_fusion': False, 'train_chunk_size': 2**12, 'validation_chunk_size': 2**12 } soft_sigmoid = True minValLoss = 9999990.0 # Get ID's and labels from the actual dataset partition = {} partition['train'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for training partition['validation'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for validation # Labels labels_train = get_AVA_labels(classes, partition, "train", filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) labels_val = get_AVA_labels(classes, partition, "validation", filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # Create + compile model, load saved weights if they exist saved_weights = None # saved_weights = "../models/rgbextra_gauss_resnet50_1807250030.hdf5" model, keras_layer_names = rgb_create_model( classes=classes['label_id'], soft_sigmoid=soft_sigmoid, model_name=params['model'], freeze_all=params['freeze_all'], conv_fusion=params['conv_fusion']) model = compile_model(model, soft_sigmoid=soft_sigmoid) # TODO Experiment: 1. no initialization, 2. ucf initialization 3. kinetics initialization initialization = True # Set to True to use initialization kinetics_weights = None ucf_weights = "a" if saved_weights is not None: model.load_weights(saved_weights) else: if initialization is True: if ucf_weights is None: print("Loading MConvNet weights: ") if params['model'] == "resnet50": ucf_weights = utils.loadmat( "../models/ucf_matconvnet/ucf101-img-resnet-50-split1.mat" ) utils.convert_resnet(model, ucf_weights) model.save( "../models/ucf_keras/keras-ucf101-rgb-resnet50-newsplit.hdf5" ) if kinetics_weights is None: if params['model'] == "inceptionv3": print("Loading Keras weights: ") keras_weights = [ "../models/kinetics_keras/tsn_rgb_params_names.pkl", "../models/kinetics_keras/tsn_rgb_params.pkl" ] utils.convert_inceptionv3(model, keras_weights, keras_layer_names) model.save( "../models/kinetics_keras/keras-kinetics-rgb-inceptionv3.hdf5" ) # Try to train on more than 1 GPU if possible # try: # print("Trying MULTI-GPU") # model = multi_gpu_model(model) print("Training set size: " + str(len(partition['train']))) # Make spltis train_splits = utils.make_chunks(original_list=partition['train'], size=len(partition['train']), chunk_size=params['train_chunk_size']) val_splits = utils.make_chunks(original_list=partition['validation'], size=len(partition['validation']), chunk_size=params['validation_chunk_size']) time_str = time.strftime("%y%m%d%H%M", time.localtime()) # TODO Don't forget to change your names :) filter_type = "gauss" bestModelPath = "../models/rgb_kininit_" + filter_type + \ "_" + params['model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/rgb_kininit_train_" + filter_type + \ "_plot_" + params['model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/rgb_kininit_val_" + filter_type + \ "_plot_" + params['model'] + "_" + time_str + ".csv" with tf.device('/gpu:0'): # NOTE Not using multi gpu for epoch in range(params['nb_epochs']): epoch_chunks_count = 0 for trainIDS in train_splits: # Load and train start_time = timeit.default_timer() # ----------------------------------------------------------- x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_train, y_train_pose, y_train_object, y_train_human = load_split( trainIDS, labels_train, params['dim'], params['n_channels'], "train", filter_type, soft_sigmoid=soft_sigmoid) y_t = [] y_t.append( to_categorical(y_train_pose, num_classes=utils.POSE_CLASSES)) y_t.append( utils.to_binary_vector(y_train_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_t.append( utils.to_binary_vector(y_train_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) history = model.fit(x_train, y_t, batch_size=params['batch_size'], epochs=1, verbose=0) utils.learning_rate_schedule(model, epoch, params['nb_epochs']) # TODO Repeat samples of unrepresented classes? # ------------------------------------------------------------ elapsed = timeit.default_timer() - start_time print("Epoch " + str(epoch) + " chunk " + str(epoch_chunks_count) + " (" + str(elapsed) + ") acc[pose,obj,human] = [" + str(history.history['pred_pose_categorical_accuracy']) + "," + str(history. history['pred_obj_human_categorical_accuracy']) + "," + str(history. history['pred_human_human_categorical_accuracy']) + "] loss: " + str(history.history['loss'])) with open(traincsvPath, 'a') as f: writer = csv.writer(f) avg_acc = ( history.history['pred_pose_categorical_accuracy'][0] + history.history['pred_obj_human_categorical_accuracy'] [0] + history.history[ 'pred_human_human_categorical_accuracy'][0]) / 3 writer.writerow([ str(avg_acc), history.history['pred_pose_categorical_accuracy'], history.history['pred_obj_human_categorical_accuracy'], history. history['pred_human_human_categorical_accuracy'], history.history['loss'] ]) epoch_chunks_count += 1 # Load val_data print("Validating data: ") # global_loss, pose_loss, object_loss, human_loss, pose_acc, object_acc, human_acc loss_acc_list = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for valIDS in val_splits: x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_val, y_val_pose, y_val_object, y_val_human = load_split( valIDS, labels_val, params['dim'], params['n_channels'], "val", filter_type, soft_sigmoid=soft_sigmoid) y_v = [] y_v.append( to_categorical(y_val_pose, num_classes=utils.POSE_CLASSES)) y_v.append( utils.to_binary_vector(y_val_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_v.append( utils.to_binary_vector(y_val_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) vglobal_loss, vpose_loss, vobject_loss, vhuman_loss, vpose_acc, vobject_acc, vhuman_acc = model.evaluate( x_val, y_v, batch_size=params['batch_size']) loss_acc_list[0] += vglobal_loss loss_acc_list[1] += vpose_loss loss_acc_list[2] += vobject_loss loss_acc_list[3] += vhuman_loss loss_acc_list[4] += vpose_acc loss_acc_list[5] += vobject_acc loss_acc_list[6] += vhuman_acc # Average over all validation chunks loss_acc_list = [x / len(val_splits) for x in loss_acc_list] with open(valcsvPath, 'a') as f: writer = csv.writer(f) # We consider accuracy as the average accuracy over the three # types of accuracy acc = (loss_acc_list[4] + loss_acc_list[5] + loss_acc_list[6]) / 3 writer.writerow([ str(acc), loss_acc_list[4], loss_acc_list[5], loss_acc_list[6], loss_acc_list[0], loss_acc_list[1], loss_acc_list[2], loss_acc_list[3] ]) if loss_acc_list[0] < minValLoss: print("New best loss " + str(loss_acc_list[0])) model.save(bestModelPath) minValLoss = loss_acc_list[0] if params['email']: utils.sendemail(from_addr='*****@*****.**', to_addr_list=['*****@*****.**'], subject='Finished training RGB-stream ', message='Training RGB with following params: ' + str(params), login='******', password='******')
def main(): # root_dir = '../../../AVA2.1/' # root_dir for the files root_dir = '../../data/AVA/files/' # Erase previous models from GPU memory K.clear_session() # Load list of action classes and separate them classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training params = { 'dim': (224, 224), 'batch_size': 32, 'n_classes': len(classes['label_id']), 'n_channels': 3, 'shuffle': False, 'nb_epochs': 200, 'model': 'resnet50', 'email': True, 'freeze_all': True, 'conv_fusion': False, 'train_chunk_size': 2**12, 'validation_chunk_size': 2**12 } soft_sigmoid = True minValLoss = 9999990.0 # Get ID's and labels from the actual dataset partition = {} partition['train'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for training partition['validation'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for validation # Labels labels_train = get_AVA_labels(classes, partition, "train", filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) labels_val = get_AVA_labels(classes, partition, "validation", filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # http://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html # Logistic Regression in Rare Events Data, Gary King, Langche Zeng # Keras needs a dict though # From documentation: class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). # This can be useful to tell the model to "pay more attention" to samples from an under-represented class. y = labels_to_numpy(labels_train) penalizing_method = 'balanced' mu = 0.7 # penalizing_method = 'weighted_log' class_weights = np.zeros(30) for i in y: class_weights[i] += 1 max_class = max(class_weights) for i in range(len(class_weights)): if class_weights[i] != 0.0: if penalizing_method == 'balanced': print( str(i) + " " + str(class_weights[i]) + " " + str(len(y) / (class_weights[i]))) #class_weights[i] = len(y) / (class_weights[i]) class_weights[i] = max_class / (class_weights[i]) elif penalizing_method == 'weighted_log': print( str(i) + " " + str(class_weights[i]) + " " + str(math.log(mu * len(y) / (class_weights[i])))) class_weights[i] = math.log(mu * len(y) / (class_weights[i])) else: print(str(i) + " " + str(class_weights[i]) + " inf ") class_weights[i] = 0.0 g = sns.barplot(x=[str(i) for i in range(len(class_weights))], y=class_weights) plt.xticks(rotation=-90) plt.title("Class weights " + penalizing_method) plt.grid(True) plt.show() class_dictionary = {} print(len(class_weights)) for i in range(len(class_weights)): class_dictionary[i] = class_weights[i] print(class_dictionary) it = iter(class_weights) seclist = [ utils.POSE_CLASSES, utils.OBJ_HUMAN_CLASSES, utils.HUMAN_HUMAN_CLASSES ] class_lists = [list(islice(it, 0, i)) for i in seclist] print(class_lists) # Create + compile model, load saved weights if they exist saved_weights = None # saved_weights = "../models/rgbextra_gauss_resnet50_1807250030.hdf5" model, keras_layer_names = rgb_create_model( classes=classes['label_id'], soft_sigmoid=soft_sigmoid, model_name=params['model'], freeze_all=params['freeze_all'], conv_fusion=params['conv_fusion']) model = compile_model(model, soft_sigmoid=soft_sigmoid) # TODO Experiment: 1. no initialization, 2. ucf initialization 3. kinetics initialization initialization = True # Set to True to use initialization kinetics_weights = "" ucf_weights = "../models/ucf_keras/keras-ucf101-rgb-resnet50-newsplit.hdf5" if saved_weights is not None: model.load_weights(saved_weights) else: if initialization is True: if ucf_weights is None: print("Loading MConvNet weights: ") if params['model'] == "resnet50": ucf_weights = utils.loadmat( "../models/ucf_matconvnet/ucf101-img-resnet-50-split1.mat" ) utils.convert_resnet(model, ucf_weights) model.save( "../models/ucf_keras/keras-ucf101-rgb-resnet50-newsplit.hdf5" ) if kinetics_weights is None: if params['model'] == "inceptionv3": print("Loading Keras weights: ") keras_weights = [ "../models/kinetics_keras/tsn_rgb_params_names.pkl", "../models/kinetics_keras/tsn_rgb_params.pkl" ] utils.convert_inceptionv3(model, keras_weights, keras_layer_names) model.save( "../models/kinetics_keras/keras-kinetics-rgb-inceptionv3.hdf5" ) # Try to train on more than 1 GPU if possible # try: # print("Trying MULTI-GPU") # model = multi_gpu_model(model) print("Training set size: " + str(len(partition['train']))) # Make spltis train_splits = utils.make_chunks(original_list=partition['train'], size=len(partition['train']), chunk_size=params['train_chunk_size']) val_splits = utils.make_chunks(original_list=partition['validation'], size=len(partition['validation']), chunk_size=params['validation_chunk_size']) time_str = time.strftime("%y%m%d%H%M", time.localtime()) # TODO Don't forget to change your names :) filter_type = "gauss" bestModelPath = "../models/rgb_weightsfinal_" + filter_type + "_" + params[ 'model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/rgb_weightsfinal_train_" + filter_type + "_plot_" + params[ 'model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/rgb_weightsfinal_val_" + filter_type + "_plot_" + params[ 'model'] + "_" + time_str + ".csv" for epoch in range(params['nb_epochs']): epoch_chunks_count = 0 for trainIDS in train_splits: # Load and train start_time = timeit.default_timer() # ----------------------------------------------------------- x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_train, y_train_pose, y_train_object, y_train_human = load_split( trainIDS, labels_train, params['dim'], params['n_channels'], "train", filter_type, soft_sigmoid=soft_sigmoid) y_t = [] y_t.append( to_categorical(y_train_pose, num_classes=utils.POSE_CLASSES)) y_t.append( utils.to_binary_vector(y_train_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_t.append( utils.to_binary_vector(y_train_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) history = model.fit(x_train, y_t, class_weight=class_lists, batch_size=params['batch_size'], epochs=1, verbose=0) utils.learning_rate_schedule(model, epoch, params['nb_epochs']) # ------------------------------------------------------------ elapsed = timeit.default_timer() - start_time print( "Epoch " + str(epoch) + " chunk " + str(epoch_chunks_count) + " (" + str(elapsed) + ") acc[pose,obj,human] = [" + str(history.history['pred_pose_categorical_accuracy']) + "," + str(history.history['pred_obj_human_categorical_accuracy']) + "," + str(history.history['pred_human_human_categorical_accuracy']) + "] loss: " + str(history.history['loss'])) with open(traincsvPath, 'a') as f: writer = csv.writer(f) avg_acc = ( history.history['pred_pose_categorical_accuracy'][0] + history.history['pred_obj_human_categorical_accuracy'][0] + history.history['pred_human_human_categorical_accuracy'][0] ) / 3 writer.writerow([ str(avg_acc), history.history['pred_pose_categorical_accuracy'], history.history['pred_obj_human_categorical_accuracy'], history.history['pred_human_human_categorical_accuracy'], history.history['loss'] ]) epoch_chunks_count += 1 # Load val_data print("Validating data: ") # global_loss, pose_loss, object_loss, human_loss, pose_acc, object_acc, human_acc loss_acc_list = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for valIDS in val_splits: x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_val, y_val_pose, y_val_object, y_val_human = load_split( valIDS, labels_val, params['dim'], params['n_channels'], "val", filter_type, soft_sigmoid=soft_sigmoid) y_v = [] y_v.append( to_categorical(y_val_pose, num_classes=utils.POSE_CLASSES)) y_v.append( utils.to_binary_vector(y_val_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_v.append( utils.to_binary_vector(y_val_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) # NOTE Can't have weights on validation vglobal_loss, vpose_loss, vobject_loss, vhuman_loss, vpose_acc, vobject_acc, vhuman_acc = model.evaluate( x_val, y_v, batch_size=params['batch_size']) loss_acc_list[0] += vglobal_loss loss_acc_list[1] += vpose_loss loss_acc_list[2] += vobject_loss loss_acc_list[3] += vhuman_loss loss_acc_list[4] += vpose_acc loss_acc_list[5] += vobject_acc loss_acc_list[6] += vhuman_acc # Average over all validation chunks loss_acc_list = [x / len(val_splits) for x in loss_acc_list] with open(valcsvPath, 'a') as f: writer = csv.writer(f) # We consider accuracy as the average accuracy over the three # types of accuracy acc = (loss_acc_list[4] + loss_acc_list[5] + loss_acc_list[6]) / 3 writer.writerow([ str(acc), loss_acc_list[4], loss_acc_list[5], loss_acc_list[6], loss_acc_list[0], loss_acc_list[1], loss_acc_list[2], loss_acc_list[3] ]) if loss_acc_list[0] < minValLoss: print("New best loss " + str(loss_acc_list[0])) model.save(bestModelPath) minValLoss = loss_acc_list[0] if params['email']: utils.sendemail( from_addr='*****@*****.**', to_addr_list=['*****@*****.**'], subject='Finished training RGB-stream with class_weights ' + penalizing_method, message='Training RGB with following params: ' + str(params), login='******', password='******')
def main(): # root_dir = '../../../AVA2.1/' # root_dir for the files root_dir = '../../data/AVA/files/' K.clear_session() # Load list of action classes and separate them (from _stream) classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training (batch size 32 is supposed to be the best?) params = { 'dim': (224, 224), 'batch_size': 64, 'n_classes': len(classes['label_id']), 'n_channels': 3, 'nb_epochs': 100, 'model': 'resnet50', 'email': True, 'train_chunk_size': 2**10, 'validation_chunk_size': 2**10 } minValLoss = 9999990.0 # Get ID's and labels from the actual dataset partition = {} partition['train'] = get_AVA_set(classes=classes, filename=root_dir + "AVA_Train_Custom_Corrected.csv", train=True) # IDs for training partition['validation'] = get_AVA_set(classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", train=True) # IDs for validation # Labels labels_train = get_AVA_labels(classes, partition, "train", filename=root_dir + "AVA_Train_Custom_Corrected.csv") labels_val = get_AVA_labels(classes, partition, "validation", filename=root_dir + "AVA_Val_Custom_Corrected.csv") # Create + compile model, load saved weights if they exist rgb_weights = "../models/rgb_gauss_resnet50_1806290918.hdf5" flow_weights = "../models/flow_resnet50_1806281901.hdf5" pose_weights = "../models/pose_alexnet_1808310209.hdf5" rgb_dir = "/media/pedro/actv-ssd/gauss_" flow_dir = "/media/pedro/actv-ssd/flow_" pose_dir = "/media/pedro/actv-ssd/pose_rgb_crop" time_str = time.strftime("%y%m%d%H%M", time.localtime()) bestModelPath = "../models/fusion_pose_gauss_" + params[ 'model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/fusion_pose_train_gauss_plot_" + params[ 'model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/fusion_pose_val_gauss_plot_" + params[ 'model'] + "_" + time_str + ".csv" nsmodel = FusionPoseModel(classes['label_id'], rgb_weights, flow_weights, pose_weights) nsmodel.compile_model(soft_sigmoid=True) model = nsmodel.model modelpath = None if modelpath is not None: print("Loading previous weights") model.load_weights(modelpath) print("Training set size: " + str(len(partition['train']))) # Load splits train_splits = utils.make_chunks(original_list=partition['train'], size=len(partition['train']), chunk_size=params['train_chunk_size']) val_splits = utils.make_chunks(original_list=partition['validation'], size=len(partition['validation']), chunk_size=params['validation_chunk_size']) with tf.device('/gpu:0'): for epoch in range(params['nb_epochs']): epoch_chunks_count = 0 for trainIDS in train_splits: start_time = timeit.default_timer() # ----------------------------------------------------------- x_val_rgb = x_val_flow = x_val_pose = y_val_pose = y_val_object = y_val_human = x_train_rgb = x_train_pose = x_train_flow = y_train_pose = y_train_object = y_train_human = None x_train_rgb, x_train_flow, x_train_pose, y_train_pose, y_train_object, y_train_human = load_split( trainIDS, labels_train, params['dim'], params['n_channels'], 10, pose_dir, rgb_dir, flow_dir, "rgb", "train", train=True) y_train_pose = to_categorical(y_train_pose, num_classes=utils.POSE_CLASSES) y_train_object = utils.to_binary_vector( y_train_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human') y_train_human = utils.to_binary_vector( y_train_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human') print("Loaded, running through CNN") history = model.fit( [x_train_rgb, x_train_flow, x_train_pose], [y_train_pose, y_train_object, y_train_human], batch_size=params['batch_size'], epochs=1, verbose=0) elapsed = timeit.default_timer() - start_time # learning_rate_schedule(model, epoch, params['nb_epochs']) # ------------------------------------------------------------ print("Epoch " + str(epoch) + " chunk " + str(epoch_chunks_count) + " (" + str(elapsed) + ") acc[pose,obj,human] = [" + str(history.history['pred_pose_categorical_accuracy']) + "," + str(history. history['pred_obj_human_categorical_accuracy']) + "," + str(history. history['pred_human_human_categorical_accuracy']) + "] loss: " + str(history.history['loss'])) with open(traincsvPath, 'a') as f: writer = csv.writer(f) avg_acc = ( history.history['pred_pose_categorical_accuracy'][0] + history.history['pred_obj_human_categorical_accuracy'] [0] + history.history[ 'pred_human_human_categorical_accuracy'][0]) / 3 writer.writerow([ str(avg_acc), history.history['pred_pose_categorical_accuracy'], history.history['pred_obj_human_categorical_accuracy'], history. history['pred_human_human_categorical_accuracy'], history.history['loss'] ]) epoch_chunks_count += 1 print("Validating data: ") loss_acc_list = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for valIDS in val_splits: x_val_rgb = x_val_flow = x_val_pose = y_val_pose = y_val_object = y_val_human = x_train_rgb = x_train_pose = x_train_flow = y_train_pose = y_train_object = y_train_human = None x_val_rgb, x_val_flow, x_val_pose, y_val_pose, y_val_object, y_val_human = load_split( valIDS, labels_val, params['dim'], params['n_channels'], "val", 10, pose_dir, flow_dir, "rgb", "val", train=True) y_val_pose = to_categorical(y_val_pose, num_classes=utils.POSE_CLASSES) y_val_object = utils.to_binary_vector( y_val_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human') y_val_human = utils.to_binary_vector( y_val_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human') vglobal_loss, vpose_loss, vobject_loss, vhuman_loss, vpose_acc, vobject_acc, vhuman_acc = model.evaluate( [x_val_rgb, x_val_flow, x_val_pose], [y_val_pose, y_val_object, y_val_human], batch_size=params['batch_size']) loss_acc_list[0] += vglobal_loss loss_acc_list[1] += vpose_loss loss_acc_list[2] += vobject_loss loss_acc_list[3] += vhuman_loss loss_acc_list[4] += vpose_acc loss_acc_list[5] += vobject_acc loss_acc_list[6] += vhuman_acc loss_acc_list = [x / len(val_splits) for x in loss_acc_list] with open(valcsvPath, 'a') as f: writer = csv.writer(f) acc = (loss_acc_list[4] + loss_acc_list[5] + loss_acc_list[6]) / 3 writer.writerow([ str(acc), loss_acc_list[4], loss_acc_list[5], loss_acc_list[6], loss_acc_list[0], loss_acc_list[1], loss_acc_list[2], loss_acc_list[3] ]) if loss_acc_list[0] < minValLoss: print("New best loss " + str(loss_acc_list[0])) model.save(bestModelPath) minValLoss = loss_acc_list[0] if params['email']: utils.sendemail(from_addr='*****@*****.**', to_addr_list=['*****@*****.**'], cc_addr_list=[], subject='Finished training pose fusion', message='Training fusion with following params: ' + str(params), login='******', password='******')
def main(): # root_dir for the files root_dir = '../../data/AVA/files/' # Erase previous models from GPU memory K.clear_session() # Load list of action classes and separate them (from utils_stream) classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training (batch size 32 is supposed to be the best?) params = { 'dim': (224, 224), 'batch_size': 64, 'n_classes': len(classes['label_id']), 'n_channels': 10, 'nb_epochs': 157, 'model': "inceptionv3", 'email': True, 'freeze_all': True, 'conv_fusion': False, 'train_chunk_size': 2**10, 'validation_chunk_size': 2**10 } minValLoss = 9999990.0 soft_sigmoid = True warp = False # TODO Use warped (camera motion corrected) flow or not crop = False # TODO Use crop flow or not encoding = "rgb" # TODO Are flows stored as rgb or as 2 grayscales # Get ID's and labels from the actual dataset partition = {} partition['train'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for training partition['validation'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for validation # Labels labels_train = get_AVA_labels(classes, partition, "train", filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) labels_val = get_AVA_labels(classes, partition, "validation", filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # Create + compile model, load saved weights if they exist # saved_weights = "saved_models/RGB_Stream_Softmax_inceptionv3.hdf5" saved_weights = "../models/flow_kineticsinit_inceptionv3_1808282350.hdf5" ucf_weights = "../models/ucf_keras/keras-ucf101-TVL1flow-" + params[ 'model'] + "-newsplit.hdf5" # Outdated model # ucf_weights = None # ucf_weights = None model, keras_layer_names = flow_create_model( classes=classes['label_id'], model_name=params['model'], soft_sigmoid=soft_sigmoid, image_shape=(224, 224), opt_flow_len=10, freeze_all=params['freeze_all'], conv_fusion=params['conv_fusion']) model = compile_model(model, soft_sigmoid=soft_sigmoid) # TODO Experiment: 1. no initialization, 2. ucf initialization 3. kinetics initialization initialization = True # Set to True to use initialization kinetics_weights = None ucf_weights = "" if saved_weights is not None: model.load_weights(saved_weights) else: if initialization is True: if kinetics_weights is None: if params['model'] == "inceptionv3": print("Loading kinetics weights: ") keras_weights = [ "../models/kinetics_keras/tsn_flow_params_names.pkl", "../models/kinetics_keras/tsn_flow_params.pkl" ] utils.convert_inceptionv3(model, keras_weights, keras_layer_names) model.save( "../models/kinetics_keras/keras-kinetics-flow-inceptionv3.hdf5" ) if ucf_weights is None: print("Loading UCF weights: ") if params['model'] == "resnet50": # TODO Better initialization, average UCF models overt he 3 splits provided ucf_weights = utils.loadmat( "../models/ucf_matconvnet/ucf101-TVL1flow-resnet-50-split1.mat" ) utils.convert_resnet(model, ucf_weights) model.save( "../models/ucf_keras/keras-ucf101-TVL1flow-resnet50-newsplit.hdf5" ) else: if ucf_weights != "": model.load_weights(ucf_weights) # Try to train on more than 1 GPU if possible # try: # print("Trying MULTI-GPU") # model = multi_gpu_model(model) print("Training set size: " + str(len(partition['train']))) # Load first train_size of partition{'train'} train_splits = utils.make_chunks(original_list=partition['train'], size=len(partition['train']), chunk_size=params['train_chunk_size']) val_splits = utils.make_chunks(original_list=partition['validation'], size=len(partition['validation']), chunk_size=params['validation_chunk_size']) time_str = time.strftime("%y%m%d%H%M", time.localtime()) if crop is True: bestModelPath = "../models/flowcrop_" + params[ 'model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/flowcrop_customcsv_train_plot_" + params[ 'model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/flowcrop_customcsv_val_plot_" + params[ 'model'] + "_" + time_str + ".csv" else: if warp is True: bestModelPath = "../models/flow_warp_" + params[ 'model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/flow_warp_customcsv_train_plot_" + params[ 'model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/flow_warp_customcsv_val_plot_" + params[ 'model'] + "_" + time_str + ".csv" else: bestModelPath = "../models/flow_kineticsinit_" + params[ 'model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/flow_kineticsinit_customcsv_train_plot_" + params[ 'model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/flow_kineticsinit_customcsv_val_plot_" + params[ 'model'] + "_" + time_str + ".csv" first_epoch = True with tf.device('/gpu:0'): # TODO Multi GPU for epoch in range(params['nb_epochs']): epoch_chunks_count = 0 if epoch > 0: first_epoch = False for trainIDS in train_splits: start_time = timeit.default_timer() # ----------------------------------------------------------- x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_train, y_train_pose, y_train_object, y_train_human = load_split( trainIDS, labels_train, params['dim'], params['n_channels'], "train", 5, first_epoch, encoding=encoding, soft_sigmoid=soft_sigmoid, crop=True) y_t = [] y_t.append( to_categorical(y_train_pose, num_classes=utils.POSE_CLASSES)) y_t.append( utils.to_binary_vector(y_train_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_t.append( utils.to_binary_vector(y_train_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) history = model.fit(x_train, y_t, batch_size=params['batch_size'], epochs=1, verbose=0) utils.learning_rate_schedule(model, epoch, params['nb_epochs']) # ------------------------------------------------------------ elapsed = timeit.default_timer() - start_time print("Epoch " + str(epoch) + " chunk " + str(epoch_chunks_count) + " (" + str(elapsed) + ") acc[pose,obj,human] = [" + str(history.history['pred_pose_categorical_accuracy']) + "," + str(history. history['pred_obj_human_categorical_accuracy']) + "," + str(history. history['pred_human_human_categorical_accuracy']) + "] loss: " + str(history.history['loss'])) with open(traincsvPath, 'a') as f: writer = csv.writer(f) avg_acc = ( history.history['pred_pose_categorical_accuracy'][0] + history.history['pred_obj_human_categorical_accuracy'] [0] + history.history[ 'pred_human_human_categorical_accuracy'][0]) / 3 writer.writerow([ str(avg_acc), history.history['pred_pose_categorical_accuracy'], history.history['pred_obj_human_categorical_accuracy'], history. history['pred_human_human_categorical_accuracy'], history.history['loss'] ]) epoch_chunks_count += 1 # Load val_data print("Validating data: ") loss_acc_list = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for valIDS in val_splits: x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_val, y_val_pose, y_val_object, y_val_human = load_split( valIDS, labels_val, params['dim'], params['n_channels'], "val", 5, first_epoch, encoding=encoding, soft_sigmoid=soft_sigmoid, crop=True) y_v = [] y_v.append( to_categorical(y_val_pose, num_classes=utils.POSE_CLASSES)) y_v.append( utils.to_binary_vector(y_val_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_v.append( utils.to_binary_vector(y_val_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) vglobal_loss, vpose_loss, vobject_loss, vhuman_loss, vpose_acc, vobject_acc, vhuman_acc = model.evaluate( x_val, y_v, batch_size=params['batch_size']) loss_acc_list[0] += vglobal_loss loss_acc_list[1] += vpose_loss loss_acc_list[2] += vobject_loss loss_acc_list[3] += vhuman_loss loss_acc_list[4] += vpose_acc loss_acc_list[5] += vobject_acc loss_acc_list[6] += vhuman_acc loss_acc_list = [x / len(val_splits) for x in loss_acc_list] with open(valcsvPath, 'a') as f: writer = csv.writer(f) acc = (loss_acc_list[4] + loss_acc_list[5] + loss_acc_list[6]) / 3 writer.writerow([ str(acc), loss_acc_list[4], loss_acc_list[5], loss_acc_list[6], loss_acc_list[0], loss_acc_list[1], loss_acc_list[2], loss_acc_list[3] ]) if loss_acc_list[0] < minValLoss: print("New best loss " + str(loss_acc_list[0])) model.save(bestModelPath) minValLoss = loss_acc_list[0] if params['email']: utils.sendemail(from_addr='*****@*****.**', to_addr_list=['*****@*****.**'], subject='Finished training OF-stream ', message='Training OF with following params: ' + str(params), login='******', password='******')