Exemple #1
0
policy.load_state_dict(torch.load('exp/p' + num + '.model'))

reward_mean = 0
total_frame = 0
e = 1
iteration = 0
with torch.no_grad():
    policy.eval()
    start = time.time()
    while e < 2:
        feats, length, e = next(data_loader)
        inputs           = np.asarray(feats, dtype=np.float32)
        inputs           = torch.from_numpy(inputs).to(device)
        length           = np.asarray(length, dtype=np.int32)
        dur              = 1.0 * length / frameRate_Hz
        
        action   = policy(inputs, length.tolist(), False)
        r_calc_t = utils.trans_param(action.detach())[:, :, :24]
        r_calc_g = utils.trans_param(action.detach())[:, :, -6:]
        r_calc = utils.calc_reward(inputs, r_calc_t,    r_calc_g, length, dur, NUM_PARAL)
        
        for i in range(BATCH_SIZE):
            reward_mean += F.mse_loss(torch.from_numpy(r_calc[i][:length[i]]).to(device), inputs[i, :length[i]], reduction='none').mean(dim=1).sum()
        total_frame += length.sum()

        iteration += 1
        if iteration % 10 == 0:
            logging.info('{} iter passed'.format(iteration))
    logging.info(reward_mean/total_frame)
    logging.info(time.time()-start)
Exemple #2
0
feats = torch.from_numpy(feats.T[:-1]).to(device)

with torch.no_grad():
    policy.eval()

    ### Assume the duration is multiple of 10ms.
    ### For example, if the time length of input feature is 101, this sound is from 1000ms to 1009ms,
    ### but I regard this as 1000ms and ignore the last feature.
    inputs = feats.unsqueeze(dim=0)
    length = [inputs.shape[1]]
    length = np.asarray(length, dtype=np.int32)
    dur = 1.0 * length / frameRate_Hz  ### dimension is sec.

    ### Get action
    action = policy(inputs, length.tolist(), False)
    action = utils.trans_param(action)

    ### Store parameters
    tractParams = action[0, :length[0], :24].reshape(1, length[0], 24)
    glottisParams = action[0, :length[0], -6:].reshape(1, length[0], 6)
    t_param = tractParams.to('cpu')
    t_tmp = torch.zeros(1, 5, 24)
    t_tmp[:, 2, :] = t_param[:, 0, :] / 3
    t_tmp[:, 3, :] = t_param[:, 0, :] * 2 / 3
    t_tmp[:, 4, :] = t_param[:, 0, :]
    t_param = torch.cat((t_tmp, t_param), dim=1)
    for i in range(5):
        t_param = torch.cat((t_param, t_param[:, -1, :].unsqueeze(dim=1)),
                            dim=1)
    g_param = glottisParams.to('cpu')
    g_tmp = torch.zeros(1, 5, 6)
Exemple #3
0
    m = mean.detach().to('cpu').numpy()
    v = var.detach().to('cpu').numpy()
    dm = librosa.feature.delta(m, width=9, order=1, axis=1)
    ddm = librosa.feature.delta(m, width=9, order=2, axis=1)
    dv = librosa.feature.delta(v, width=9, order=1, axis=1)
    dv = 2 * v + dv
    dv = np.where(dv <= 0, 1e-10, dv)
    ddv = librosa.feature.delta(dv, width=9, order=1, axis=1)
    ddv = 2 * dv + ddv
    ddv = np.where(ddv <= 0, 1e-10, ddv)

    m = np.concatenate((m, dm, ddm), axis=2)
    v = np.concatenate((v, dv, ddv), axis=2)
    action = G.mlpg(m[0], v[0], windows)
    action = torch.from_numpy(np.asarray(action, dtype=np.float32)).to(device)
    action = utils.trans_param(action).unsqueeze(dim=0)

    ### Store parameters
    tractParams = action[0, :length[0], :24].reshape(1, length[0], 24)
    glottisParams = action[0, :length[0], -6:].reshape(1, length[0], 6)
    t_param = tractParams.to('cpu')
    t_tmp = torch.zeros(1, 5, 24)
    t_tmp[:, 2, :] = t_param[:, 0, :] / 3
    t_tmp[:, 3, :] = t_param[:, 0, :] * 2 / 3
    t_tmp[:, 4, :] = t_param[:, 0, :]
    t_param = torch.cat((t_tmp, t_param), dim=1)
    for i in range(5):
        t_param = torch.cat((t_param, t_param[:, -1, :].unsqueeze(dim=1)),
                            dim=1)
    g_param = glottisParams.to('cpu')
    g_tmp = torch.zeros(1, 5, 6)
Exemple #4
0
    ddv = librosa.feature.delta(dv, width=9, order=1, axis=1)
    ddv = 2 * dv + ddv
    ddv = np.where(ddv <= 0, 1e-10, ddv)

    m = np.concatenate((m, dm, ddm), axis=2)
    v = np.concatenate((v, dv, ddv), axis=2)
    action = np.zeros((BATCH_SIZE, length[0], OUT_SIZE))
    for i in range(BATCH_SIZE):
        action[i] = G.mlpg(m[i], v[i], windows)
    action = torch.from_numpy(np.asarray(action, dtype=np.float32)).to(device)
    action = torch.clamp(action, min=0.0, max=1.0)
    gauss_dist = torch.distributions.normal.Normal(mean, var)
    log_prob = gauss_dist.log_prob(action).sum(dim=-1).sum(dim=-1)

    ### Store parameters
    tractParams = utils.trans_param(action)[:, :, :24]
    glottisParams = utils.trans_param(action)[:, :, -6:]

    ### Reward calculation
    reward = utils.calc_reward(inputs, tractParams, glottisParams, length, dur,
                               NUM_PARAL)
    reward_mean = 0
    for i in range(BATCH_SIZE):
        reward_mean += F.mse_loss(torch.from_numpy(
            reward[i][:length[i]]).to(device),
                                  inputs[i, :length[i]],
                                  reduction='none').mean(dim=1).sum()
    reward_mean /= length.sum()

    ### update Q-function
    q_value = q_func(action, length.tolist())
Exemple #5
0
    length = np.asarray(length, dtype=np.int32) - 1
    length = np.where(length > AUDIO_SEGMENT, AUDIO_SEGMENT, length)
    dur = 1.0 * length / frameRate_Hz  ### dimension is sec.

    ### Get action
    noise_act = policy(inputs, length.tolist(), True)
    action = policy(inputs, length.tolist(), False)

    if (iteration + 1) % ADJUST_STEP == 0:
        if F.mse_loss(noise_act, action) < DELTA**2:
            policy.fc.sigma_init *= 1.01
        else:
            policy.fc.sigma_init /= 1.01

    ### Store parameters
    tractParams = utils.trans_param(noise_act)[:, :, :24]
    glottisParams = utils.trans_param(noise_act)[:, :, -6:]
    r_calc_t = utils.trans_param(action.detach())[:, :, :24]
    r_calc_g = utils.trans_param(action.detach())[:, :, -6:]

    ### Reward calculation
    reward = utils.calc_reward(inputs, tractParams, glottisParams, length, dur,
                               NUM_PARAL)
    r_calc = utils.calc_reward(inputs, r_calc_t, r_calc_g, length, dur,
                               NUM_PARAL)
    reward_mean = 0
    for i in range(BATCH_SIZE):
        reward_mean += F.mse_loss(torch.from_numpy(
            r_calc[i][:length[i]]).to(device),
                                  inputs[i, :length[i]],
                                  reduction='none').mean(dim=1).sum()