Exemple #1
0
    def refine_by_delaunay(self, triangles):
        """refines given elements by the delaunay refinement method"""
        p = self.node_list
        t = self.face_list

        for tr in triangles:
            pmid = (p[t[tr][0]] + p[t[tr][1]] + p[t[tr][2]]) / 3
            p = np.append(p, [pmid], axis=0)

        self.edge_length /= 2
        dp = self.edge_length

        for i in range(1, int(ceil(1 / dp))):
            p = np.append(p, [[i * dp, 0]], axis=0)
        for i in range(int(ceil(.5 / dp))):
            p = np.append(p, [[1, i * dp]], axis=0)
        for i in range(int(ceil(.5 / dp))):
            p = np.append(p, [[1 - i * dp, .5]], axis=0)
        for i in range(int(ceil(.5 / dp))):
            p = np.append(p, [[.5, .5 + i * dp]], axis=0)
        for i in range(int(ceil(.5 / dp))):
            p = np.append(p, [[.5 - i * dp, 1]], axis=0)
        for i in range(int(ceil(1 / dp))):
            p = np.append(p, [[0, 1 - i * dp]], axis=0)

        p = unique2d(p)

        t = spspatial.Delaunay(p).vertices
        # remove triangles where centroid outside boundary (good enough...)
        pmid = p[t].sum(1) / 3
        t = t[self.fd(pmid) < 1e-15]

        t = [Face(t[i]) for i in range(len(t))]
        self.node_list = p
        self.face_list = t
Exemple #2
0
    def refine_by_delaunay(self, triangles):
        """refines given elements by the delaunay refinement method"""
        p = self.node_list
        t = self.face_list

        for tr in triangles:
            pmid = (p[t[tr][0]] + p[t[tr][1]] + p[t[tr][2]]) / 3
            p = np.append(p, [pmid], axis=0)

        self.edge_length /= 2
        dp = self.edge_length

        for i in range(1,int(ceil(1/dp))):
            p = np.append(p, [[i*dp, 0]], axis=0)
        for i in range(int(ceil(.5/dp))):
            p = np.append(p, [[1, i*dp]], axis=0)
        for i in range(int(ceil(.5/dp))):
            p = np.append(p, [[1-i*dp, .5]], axis=0)
        for i in range(int(ceil(.5/dp))):
            p = np.append(p, [[.5, .5+i*dp]], axis=0)
        for i in range(int(ceil(.5/dp))):
            p = np.append(p, [[.5-i*dp, 1]], axis=0)
        for i in range(int(ceil(1/dp))):
            p = np.append(p, [[0, 1-i*dp]], axis=0)

        p = unique2d(p)

        t = spspatial.Delaunay(p).vertices
        # remove triangles where centroid outside boundary (good enough...)
        pmid = p[t].sum(1) / 3
        t = t[self.fd(pmid) < 1e-15]

        t = [Face(t[i]) for i in range(len(t))]
        self.node_list = p
        self.face_list = t
Exemple #3
0
    def create_equilateral_uniform_mesh(distance_function,
                                        bounding_box,
                                        edge_length,
                                        fixed_points=None):
        """
        distance_function > 0 outside, <0 inside, =0 boundary
        bounding box = [xmin, xmax, ymin, ymax, ...]
        edge_length = desired edge length of triangle
        fixed points = clear
        """

        geps = .001 * edge_length

        xmin, xmax, ymin, ymax = bounding_box
        mesh = TriangularMesh()

        # make grid
        x, y = np.mgrid[xmin:(xmax + edge_length):edge_length,
                        ymin:(ymax +
                              edge_length * np.sqrt(3) / 2):edge_length *
                        np.sqrt(3) / 2]

        # shift even rows
        #x[:, 1::2] += edge_length / 2

        p = np.vstack((x.flat, y.flat)).T

        for i in range(
                int(ceil((ymax - ymin) / (edge_length * np.sqrt(3) / 2)))):
            p = np.append(p, [[xmin, i * np.sqrt(3) / 2 * edge_length]],
                          axis=0)
            p = np.append(p, [[xmax, i * np.sqrt(3) / 2 * edge_length]],
                          axis=0)
            p = np.append(p, [[0.5, i * np.sqrt(3) / 2 * edge_length]], axis=0)

        for i in range(int(ceil((xmax - xmin) / edge_length))):
            p = np.append(p, [[xmin + 0.5 + i * edge_length, ymin + 0.5]],
                          axis=0)

        # remove points outside boundary
        p = p[distance_function(p) < -geps]

        # add fixed points
        if fixed_points is not None:
            fixed_points = np.array(fixed_points, dtype='d')
            p = np.vstack((fixed_points, p))
            p = unique2d(p)

        # triangulation
        t = spspatial.Delaunay(p).vertices

        # remove triangles where centroid outside boundary (good enough...)
        pmid = p[t].sum(1) / 3
        t = t[distance_function(pmid) < -1e-12]
        # print distance_function(p[t].sum(1)/3)

        mesh.set_mesh(p, t)
        mesh.fd = distance_function
        return mesh
Exemple #4
0
    def create_random_mesh(distance_function,
                           bounding_box,
                           number_of_points,
                           dist=0,
                           fixed_points=None):
        """
        distance_function > 0 outside, <0 inside, =0 boundary
        bounding box = [xmin, xmax, ymin, ymax, ...]
        number of points = clear
        dist = minimum distance for each new node to keep from all other points, default 0
        fixed points = clear
        if finding a new point fails more than 50 times, dist is set to dist=dist/sqrt(2)
        """

        geps = 1e-10
        n = number_of_points
        xmin, xmax, ymin, ymax = bounding_box
        mesh = TriangularMesh()

        p = fixed_points
        i = 0
        failures = 0

        while i < n:
            pv = [np.random.uniform(xmin, xmax), np.random.uniform(ymin, ymax)]

            if (dist == 0 or closest_node(pv, p) >= dist
                ) and distance_function([pv]) < -geps:
                p = np.append(p, [pv], axis=0)
                i += 1
            else:
                failures += 1

            if failures > 50:
                failures = 0
                dist = dist / sqrt(2)

        # remove duplicates
        p = unique2d(p)

        # triangulation
        t = spspatial.Delaunay(p).vertices

        # remove triangles where centroid outside boundary (good enough...)
        pmid = p[t].sum(1) / 3
        t = t[distance_function(pmid) < geps]

        mesh.set_mesh(p, t)
        mesh.fd = distance_function
        return mesh
Exemple #5
0
    def create_equilateral_uniform_mesh(distance_function, bounding_box, edge_length, fixed_points=None):
        """
        distance_function > 0 outside, <0 inside, =0 boundary
        bounding box = [xmin, xmax, ymin, ymax, ...]
        edge_length = desired edge length of triangle
        fixed points = clear
        """

        geps = .001 * edge_length

        xmin, xmax, ymin, ymax = bounding_box
        mesh = TriangularMesh()

        # make grid
        x, y = np.mgrid[xmin:(xmax + edge_length):edge_length,
               ymin:(ymax + edge_length * np.sqrt(3) / 2):edge_length * np.sqrt(3) / 2]

        # shift even rows
        #x[:, 1::2] += edge_length / 2

        p = np.vstack((x.flat, y.flat)).T

        for i in range(int(ceil((ymax - ymin) / (edge_length * np.sqrt(3) / 2)))):
            p = np.append(p, [[xmin, i * np.sqrt(3) / 2 * edge_length]], axis=0)
            p = np.append(p, [[xmax, i * np.sqrt(3) / 2 * edge_length]], axis=0)
            p = np.append(p, [[0.5, i * np.sqrt(3) / 2 * edge_length]], axis=0)

        for i in range(int(ceil((xmax - xmin) / edge_length))):
            p = np.append(p, [[xmin + 0.5 + i * edge_length, ymin + 0.5]], axis=0)

        # remove points outside boundary
        p = p[distance_function(p) < -geps]

        # add fixed points
        if fixed_points is not None:
            fixed_points = np.array(fixed_points, dtype='d')
            p = np.vstack((fixed_points, p))
            p = unique2d(p)

        # triangulation
        t = spspatial.Delaunay(p).vertices

        # remove triangles where centroid outside boundary (good enough...)
        pmid = p[t].sum(1) / 3
        t = t[distance_function(pmid) < -1e-12]
        # print distance_function(p[t].sum(1)/3)

        mesh.set_mesh(p, t)
        mesh.fd = distance_function
        return mesh
Exemple #6
0
    def create_bad_uniform_mesh(distance_function,
                                bounding_box,
                                edge_length,
                                fixed_points=None):
        """
        distance_function > 0 outside, <0 inside, =0 boundary
        bounding box = [xmin, xmax, ymin, ymax, ...]
        edge_length = desired edge length of triangle
        fixed points = clear
        """
        geps = .001 * edge_length

        xmin, xmax, ymin, ymax = bounding_box
        mesh = TriangularMesh()

        dx = edge_length / 5.
        dy = edge_length * 5.

        # make grid
        x, y = np.mgrid[xmin:(xmax + dx):dx, ymin:ymax + dy:dy]

        # shift even rows
        #x[:, 0::2] += edge_length / 2

        p = np.vstack((x.flat, y.flat)).T

        # remove points outside boundary
        p = p[distance_function(p) < geps]

        # add fixed points
        if fixed_points is not None:
            fixed_points = np.array(fixed_points, dtype='d')
            p = np.vstack((fixed_points, p))
            p = unique2d(p)

        t = spspatial.Delaunay(p).vertices

        pmid = p[t].sum(1) / 3
        t = t[distance_function(pmid) < geps]
        # print distance_function(p[t].sum(1)/3)

        mesh.set_mesh(p, t)
        mesh.fd = distance_function
        mesh.edge_length = edge_length
        return mesh
Exemple #7
0
    def create_random_mesh(distance_function, bounding_box, number_of_points, dist=0, fixed_points=None):
        """
        distance_function > 0 outside, <0 inside, =0 boundary
        bounding box = [xmin, xmax, ymin, ymax, ...]
        number of points = clear
        dist = minimum distance for each new node to keep from all other points, default 0
        fixed points = clear
        if finding a new point fails more than 50 times, dist is set to dist=dist/sqrt(2)
        """

        geps = 1e-10
        n = number_of_points
        xmin, xmax, ymin, ymax = bounding_box
        mesh = TriangularMesh()

        p = fixed_points
        i = 0
        failures = 0

        while i < n:
            pv = [np.random.uniform(xmin, xmax), np.random.uniform(ymin, ymax)]

            if (dist == 0 or closest_node(pv, p) >= dist) and distance_function([pv]) < -geps:
                p = np.append(p, [pv], axis=0)
                i += 1
            else:
                failures += 1

            if failures > 50:
                failures = 0
                dist = dist / sqrt(2)

        # remove duplicates
        p = unique2d(p)

        # triangulation
        t = spspatial.Delaunay(p).vertices

        # remove triangles where centroid outside boundary (good enough...)
        pmid = p[t].sum(1) / 3
        t = t[distance_function(pmid) < geps]

        mesh.set_mesh(p, t)
        mesh.fd = distance_function
        return mesh
Exemple #8
0
    def create_bad_uniform_mesh(distance_function, bounding_box, edge_length, fixed_points=None):
        """
        distance_function > 0 outside, <0 inside, =0 boundary
        bounding box = [xmin, xmax, ymin, ymax, ...]
        edge_length = desired edge length of triangle
        fixed points = clear
        """
        geps = .001 * edge_length

        xmin, xmax, ymin, ymax = bounding_box
        mesh = TriangularMesh()


        dx = edge_length/5.
        dy = edge_length*5.

        # make grid
        x, y = np.mgrid[xmin:(xmax + dx):dx,
               ymin:ymax + dy:dy]

        # shift even rows
        #x[:, 0::2] += edge_length / 2

        p = np.vstack((x.flat, y.flat)).T

        # remove points outside boundary
        p = p[distance_function(p) < geps]

        # add fixed points
        if fixed_points is not None:
            fixed_points = np.array(fixed_points, dtype='d')
            p = np.vstack((fixed_points, p))
            p = unique2d(p)


        t = spspatial.Delaunay(p).vertices

        pmid = p[t].sum(1) / 3
        t = t[distance_function(pmid) < geps]
        # print distance_function(p[t].sum(1)/3)

        mesh.set_mesh(p, t)
        mesh.fd = distance_function
        mesh.edge_length = edge_length
        return mesh