Exemple #1
0
 def getTheta(self):
     if self.use_tensor:
         return utils.vectorizeParams(
             self.Ws, self.L, self.W, self.V)
     else:
         return utils.vectorizeParams(
             self.Ws, self.L, self.W)
 def calculateTotalGradient(self, model):
     grad = np.zeros(model.num_parameters)
     self.dJ_dWs += len(self.trees_train) * model.lambda_Ws * model.Ws
     self.dJ_dL += len(self.trees_train) * model.lambda_L * model.L
     self.dJ_dW += len(self.trees_train) * model.lambda_W * model.W
     if model.use_tensor:
         self.dJ_dV += len(self.trees_train) * model.lambda_V * model.V
         grad = utils.vectorizeParams(self.dJ_dWs, self.dJ_dL, self.dJ_dW,
                                      self.dJ_dV)
     else:
         grad = utils.vectorizeParams(self.dJ_dWs, self.dJ_dL, self.dJ_dW)
     return grad
Exemple #3
0
    def calculateTotalGradient(self, model):
        grad = np.zeros(model.num_parameters)

        # add regularizer gradients
        self.dJ_dWs += len(self.trees_train) * model.lambda_Ws * model.Ws
        self.dJ_dL += len(self.trees_train) * model.lambda_L * model.L
        self.dJ_dW += len(self.trees_train) * model.lambda_W * model.W

        if model.use_tensor:
            self.dJ_dV += len(self.trees_train)*model.lambda_V * model.V

            grad = utils.vectorizeParams(
                self.dJ_dWs, self.dJ_dL, self.dJ_dW, self.dJ_dV)
        else:
            grad = utils.vectorizeParams(
                self.dJ_dWs, self.dJ_dL, self.dJ_dW)

        return grad
    def calculateTotalGradient(self, model, scaler):
        grad = np.zeros(model.num_parameters)

        # average the gradient by dividing the minibatch size
        self.dJ_dWs *= scaler
        self.dJ_dL *= scaler
        self.dJ_dW *= scaler

        # add regularizer gradients
        self.dJ_dWs += model.lambda_Ws * model.Ws
        self.dJ_dL += model.lambda_L * model.L
        self.dJ_dW += model.lambda_W * model.W

        if model.use_tensor:
            self.dJ_dV *= scaler
            self.dJ_dV += model.lambda_V * model.V

            grad = utils.vectorizeParams(
                self.dJ_dWs, self.dJ_dL, self.dJ_dW, self.dJ_dV)
        else:
            grad = utils.vectorizeParams(
                self.dJ_dWs, self.dJ_dL, self.dJ_dW)

        return grad
Exemple #5
0
 def getTheta(self):
     if self.use_tensor:
         return utils.vectorizeParams(self.Ws, self.L, self.W, self.V)
     else:
         return utils.vectorizeParams(self.Ws, self.L, self.W)