Exemple #1
0
    def prepare_answers(self) -> List[ExamQuestionAnswerMeta]:
        """
        Returns a list with randomly selected answers
        """
        correct_answers = list(filter(lambda ans: ans.is_correct,
                                      self.answers))
        wrong_answers = list(
            filter(lambda ans: not ans.is_correct, self.answers))
        wrong_answers_count = self.num_answers - self.num_correct_answers

        def validate(items, count, prompt):
            nonlocal self
            item_count = len(items)
            if count > item_count:
                raise SchemeError(
                    f"Question `{self.text}`, {prompt}: got {item_count}, expected {count}"
                )

        validate(correct_answers, self.num_correct_answers, 'correct answers')
        validate(wrong_answers, wrong_answers_count, 'wrong answers')

        def get_likelihood(ans):
            return ans.likelihood

        correct_answers = weighted_random(correct_answers, get_likelihood,
                                          self.num_correct_answers)
        wrong_answers = weighted_random(wrong_answers, get_likelihood,
                                        wrong_answers_count)

        answers = correct_answers + wrong_answers
        random.shuffle(answers)
        return answers
Exemple #2
0
def test_random_negative():
    objs = list(range(-5, 20))
    try:
        weighted_random(objs, lambda x: x, 1)
    except ValueError:
        # ok
        return
    raise Exception("Accepts negative weights")
Exemple #3
0
def test_random_zero():
    objs = list(range(0, 20))
    try:
        weighted_random(objs, lambda x: x, 20)
    except ValueError:
        # ok
        return
    raise Exception("Doesn't ignore zero-weights")
 def make_place_name(self):
     name = ""
     if random.random() < self.prob_prefix:
         name += random.choice(self.place_name_prefixes).title() + " "
     syl_count = weighted_random(self.place_name_syllables)
     name += self.make_word(syl_count).title()
     return name
 def make_word(self, syl_count=3, p_odd=0.5):
     ''' Make a random word
     '''
     word = "".join([weighted_random(self.syllable_weights) 
                     for i in range(syl_count)])
     if len(word) > 2 and random.random() < p_odd:
         word = word[:-1]
     return word.title()
 def __init__(self, fair_dice: dice.Dice, loaded_dice: dice.Dice,
              initial_dice_probability: np.ndarray,
              transition_matrix: np.ndarray) -> None:
     self._fair_dice = fair_dice
     self._loaded_dice = loaded_dice
     self._initial_dice_probability = initial_dice_probability
     self._transition_matrix = transition_matrix
     self._current_dice = utils.weighted_random(
         self._initial_dice_probability)
    def get_next_value(self) -> Tuple[int, int]:
        # Try to switch between dices
        self._current_dice = utils.weighted_random(
            self._transition_matrix[self._current_dice])

        # Let's roll the dice!
        if self._current_dice == DiceType.FAIR:
            return self._current_dice, self._fair_dice.get_next_value()
        else:
            return self._current_dice, self._loaded_dice.get_next_value()
 def __init__(self, n_prefixes=3):
     
     self.syllable_weights = {}
     self._make_weighted_syllables()
     
     # Place name parameters
     self.prob_prefix = 0.3 
     self.n_prefixes = n_prefixes
     self.place_name_prefixes = [
         weighted_random(self.syllable_weights).title() 
                 for _ in range(self.n_prefixes) ]
     self.place_name_syllables = {1: 1, 2: 3, 3: 3, 4: 1}
Exemple #9
0
 def generate_exam(self,
                   num_questions: int,
                   description: str,
                   title: str = None) -> Exam:
     """
     Creates an Exam instance from randomly selected questions and answers
     Args:
         num_questions: the number of questions to include
         description: exam description shown to user
         title: short exam title
     """
     questions_meta = weighted_random(self.questions.items(),
                                      lambda q: q[1].likelihood,
                                      num_questions)
     questions = [
         ExamQuestion.from_meta(id, meta) for id, meta in questions_meta
     ]
     now = datetime.now()
     return Exam(meta_uuid=self.uuid,
                 generated_at=now,
                 title=title or self.title,
                 questions=questions,
                 description=description)
Exemple #10
0
 def get_next_value(self) -> int:
     return utils.weighted_random(self.probabilities)
Exemple #11
0
def base_walk(distribution, mix_step, N, k, init_sample=None, flag_gpu=False, track_PSRF = False, \
              PSRF_freq = None, PSRF_tol = None, PSRF_num = None):

    sample = init_sample
    tic_len = mix_step // 5

    if not track_PSRF:
        if sample is None:
            sample = np.random.permutation(N)[:k]
            sample = np.sort(sample)

        chain = []

        for i in range(mix_step):
            if (i + 1) % tic_len == 0:
                print('{}-th iteration.'.format(i + 1))

            drop_index = random.randint(0, k - 1)
            sample = np.delete(sample, drop_index)
            sample_compl = np.setxor1d(np.array(range(N)), sample)

            proposal_probabilities = np.zeros(N - k + 1)

            for index, add in enumerate(sample_compl):
                proposed_move = np.append(sample, add)
                proposal_probabilities[index] = distribution(proposed_move)

            proposal_probabilities = proposal_probabilities / sum(
                proposal_probabilities)

            chosen_index = utils.weighted_random(proposal_probabilities)
            sample = np.append(sample, sample_compl[chosen_index])

            chain.append(sample)

        return chain

    elif track_PSRF:
        if sample is None:
            sample = np.zeros((PSRF_num, k))
            for j in range(PSRF_num):
                sample[j] = np.random.permutation(N)[:k]
                sample[j] = np.sort(sample[j])

        chains = np.zeros((PSRF_num, mix_step, k))

        for i in range(mix_step):
            if (i + 1) % tic_len == 0:
                print('{}-th iteration.'.format(i + 1))

            for j in range(PSRF_num):

                drop_index = random.randint(0, k - 1)
                sample_drop = np.delete(sample[j], drop_index)
                sample_compl = np.setxor1d(np.array(range(N + k)), sample_drop)

                proposal_probabilities = np.zeros(N + 1)

                for index, add in enumerate(sample_compl):
                    proposed_move = np.append(sample_drop, add)
                    proposed_move = list(map(int, proposed_move))
                    proposal_probabilities[index] = distribution(proposed_move)

                proposal_probabilities = proposal_probabilities / sum(
                    proposal_probabilities)

                chosen_index = utils.weighted_random(proposal_probabilities)
                sample[j] = np.append(sample_drop, sample_compl[chosen_index])

                chains[j, i, :] = sample[j]

            if (i + 1) % PSRF_freq == 0:
                chains_binary = np.zeros((PSRF_num, mix_step, N))
                within_variance = np.zeros((PSRF_num, N))
                chain_averages = np.zeros((PSRF_num, N))

                for j in range(PSRF_num):

                    chain = utils.set_to_binary(chains[j], N)

                    chains_binary[j] = chain

                    chain_averages[j] = (mix_step / i) * np.average(chain,
                                                                    axis=0)
                    within_variance[j] = (mix_step / i) * np.var(chain, axis=0)

                PSRF = compute_PSRF(chain_averages, within_variance, PSRF_num,
                                    N)

                if PSRF < PSRF_tol:
                    return i

        return mix_step
Exemple #12
0
def base_walk_proposal_scaled(distribution, mix_step, N, k, init_sample=None, flag_gpu=False, track_PSRF = False, \
              PSRF_freq = None, PSRF_tol = None, PSRF_num = None):

    sample = init_sample
    tic_len = mix_step // 5

    if not track_PSRF:
        if sample is None:
            sample = np.random.permutation(N + k)[:k]
            sample = np.sort(sample)

        chain = []

        for i in range(mix_step):
            if (i + 1) % tic_len == 0:
                print('{}-th iteration.'.format(i + 1))

            drop_index = random.randint(0, k - 1)
            sample_drop = np.delete(sample, drop_index)
            sample_compl = np.setxor1d(np.array(range(N + k)), sample)

            current_len = sample[sample < N].shape[0]

            proposal_probabilities = np.zeros(N + 1)

            for index, add in enumerate(sample_compl):
                proposed_move = np.append(sample, add)
                proposed_len = proposed_move[proposed_move < N].shape[0]

                prob = distribution(proposed_move)

                if proposed_len == current_len:
                    proposal_probabilities[index] = prob

                elif proposed_len == current_len + 1:
                    proposal_probabilities[index] = proposed_len * prob

                elif proposed_len == current_len - 1:
                    proposal_probabilities[index] = proposed_len * prob

            proposal_probabilities = proposal_probabilities / sum(
                proposal_probabilities)

            proposed_index = utils.weighted_random(proposal_probabilities)
            proposed_sample = np.append(sample_drop,
                                        sample_compl[proposed_index])
            proposed_sample = np.array(list(map(int, proposed_sample)))

            proposed_len = proposed_sample[proposed_sample < N].shape[0]

            if current_len < proposed_len:
                acceptance_prob = 1 / (k - current_len)

                ran = np.random.uniform()
                if ran < acceptance_prob:
                    sample = proposed_sample

            else:
                sample = proposed_sample

            chain.append(sample)

        return chain

    elif track_PSRF:
        if sample is None:
            sample = np.zeros((PSRF_num, k))
            for j in range(PSRF_num):
                sample[j] = np.random.permutation(N + k)[:k]
                sample[j] = np.sort(sample[j])

        chains = np.zeros((PSRF_num, mix_step, k))

        PSRFs = []
        mix_time = mix_step
        first = True
        for i in range(mix_step):
            if (i + 1) % tic_len == 0:
                print('{}-th iteration.'.format(i + 1))

            for j in range(PSRF_num):

                drop_index = random.randint(0, k - 1)
                sample_drop = np.delete(sample[j], drop_index)
                sample_compl = np.setxor1d(np.array(range(N + k)), sample_drop)

                current_sample = sample[j]
                current_len = current_sample[current_sample < N].shape[0]

                proposal_probabilities = np.zeros(N + 1)

                for index, add in enumerate(sample_compl):
                    proposed_move = np.append(sample_drop, add)
                    proposed_move = np.array(list(map(int, proposed_move)))
                    proposed_len = proposed_move[proposed_move < N].shape[0]

                    prob = distribution(proposed_move)

                    if proposed_len == current_len:
                        proposal_probabilities[index] = prob

                    elif proposed_len == current_len + 1:
                        proposal_probabilities[index] = (math.exp(1) / k) * (
                            k - current_len) * prob

                    elif proposed_len == current_len - 1:
                        proposal_probabilities[index] = (
                            (k / math.exp(1)) * prob) / (k - proposed_len)

                proposal_probabilities = proposal_probabilities / sum(
                    proposal_probabilities)
                proposed_index = utils.weighted_random(proposal_probabilities)
                proposed_sample = np.append(sample_drop,
                                            sample_compl[proposed_index])

                current_len = current_sample[current_sample < N].shape[0]

                proposed_sample = np.array(proposed_sample)
                proposed_len = proposed_sample[proposed_sample < N].shape[0]

                if current_len < proposed_len:

                    acceptance_prob = min(1, (k / math.exp(1)) /
                                          (k - current_len))
                    ran = np.random.uniform()
                    if ran < acceptance_prob:
                        sample[j] = proposed_sample

                elif current_len > proposed_len:

                    acceptance_prob = min(1, (math.exp(1) / k) *
                                          (k - current_len + 1))
                    ran = np.random.uniform()
                    if ran < acceptance_prob:
                        sample[j] = proposed_sample

                else:
                    sample[j] = proposed_sample

                chains[j, i, :] = sample[j]

            if (i + 1) % PSRF_freq == 0:
                chains_binary = np.zeros((PSRF_num, mix_step, N + k))
                within_variance = np.zeros((PSRF_num, N + k))
                chain_averages = np.zeros((PSRF_num, N + k))

                for j in range(PSRF_num):

                    chain = utils.set_to_binary(chains[j], N + k)

                    chains_binary[j] = chain

                    chain_averages[j] = (mix_step / i) * np.average(chain,
                                                                    axis=0)
                    within_variance[j] = (mix_step / i) * np.var(chain, axis=0)

                PSRF = compute_PSRF(chain_averages, within_variance, i)

                PSRFs.append(PSRF)

                if PSRF < PSRF_tol and first:
                    print(PSRF)
                    mix_time = i
                    first = False

        return chains, np.array(PSRFs), mix_time
Exemple #13
0
def test_random():
    objs = list(range(0, 20))
    output = weighted_random(objs, lambda x: x, 2)
    assert len(output) == 2