Exemple #1
0
    def __init__(self, opt):

        opt.src_select_data = opt.src_select_data.split('-')
        opt.src_batch_ratio = opt.src_batch_ratio.split('-')
        opt.tar_select_data = opt.tar_select_data.split('-')
        opt.tar_batch_ratio = opt.tar_batch_ratio.split('-')
        """ vocab / character number configuration """
        if opt.sensitive:
            # opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
            opt.character = string.printable[:
                                             -6]  # same with ASTER setting (use 94 char).

        if opt.char_dict is not None:
            opt.character = load_char_dict(
                opt.char_dict)[3:-2]  # 去除Attention 和 CTC引入的一些特殊符号
        """ model configuration """

        self.converter = AttnLabelConverter(opt.character)
        opt.num_class = len(self.converter.character)

        if opt.rgb:
            opt.input_channel = 3
        self.opt = opt
        print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
              opt.input_channel, opt.output_channel, opt.hidden_size,
              opt.num_class, opt.batch_max_length, opt.Transformation,
              opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)
        self.save_opt_log(opt)

        self.build_model(opt)
Exemple #2
0
    def load_net(self):
        """ model configuration """
        if 'CTC' in self.opt.Prediction:
            self.converter = CTCLabelConverter(self.opt.character)
        else:
            self.converter = AttnLabelConverter(self.opt.character)
        self.opt.num_class = len(self.converter.character)

        if self.opt.rgb:
            self.opt.input_channel = 3
        print("input channle :{}".format(self.opt.input_channel))
        self.model = Model(self.opt)
        print('model input parameters', self.opt.imgH, self.opt.imgW,
              self.opt.num_fiducial, self.opt.input_channel,
              self.opt.output_channel, self.opt.hidden_size,
              self.opt.num_class, self.opt.batch_max_length,
              self.opt.Transformation, self.opt.FeatureExtraction,
              self.opt.SequenceModeling, self.opt.Prediction)
        self.model = torch.nn.DataParallel(self.model).to(device)

        # load model
        print('loading pretrained model from %s' % self.opt.saved_model)
        state_dict = torch.load(self.opt.saved_model, map_location=device)
        self.model.load_state_dict(state_dict)

        # prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
        self.AlignCollate_demo = AlignCollate(imgH=self.opt.imgH,
                                              imgW=self.opt.imgW,
                                              keep_ratio_with_pad=self.opt.PAD)
    def __init__(self, model_path, gpu_id=None):
        """
        初始化模型
        :param model_path: 模型地址
        :param gpu_id: 在哪一块gpu上运行
        """
        checkpoint = torch.load(model_path)
        print(f"load {checkpoint['epoch']} epoch params")
        config = checkpoint['config']
        alphabet = config['dataset']['alphabet']
        if gpu_id is not None and isinstance(
                gpu_id, int) and torch.cuda.is_available():
            self.device = torch.device("cuda:%s" % gpu_id)
        else:
            self.device = torch.device("cpu")
        print('device:', self.device)

        self.transform = []
        for t in config['dataset']['train']['dataset']['args']['transforms']:
            if t['type'] in ['ToTensor', 'Normalize']:
                self.transform.append(t)
        self.transform = get_transforms(self.transform)

        self.gpu_id = gpu_id
        img_h, img_w = 32, 100
        for process in config['dataset']['train']['dataset']['args'][
                'pre_processes']:
            if process['type'] == "Resize":
                img_h = process['args']['img_h']
                img_w = process['args']['img_w']
                break
        self.img_w = img_w
        self.img_h = img_h
        self.img_mode = config['dataset']['train']['dataset']['args'][
            'img_mode']
        self.alphabet = alphabet
        img_channel = 3 if config['dataset']['train']['dataset']['args'][
            'img_mode'] != 'GRAY' else 1

        if config['arch']['args']['prediction']['type'] == 'CTC':
            self.converter = CTCLabelConverter(config['dataset']['alphabet'])
        elif config['arch']['args']['prediction']['type'] == 'Attn':
            self.converter = AttnLabelConverter(config['dataset']['alphabet'])
        self.net = get_model(img_channel, len(self.converter.character),
                             config['arch']['args'])
        self.net.load_state_dict(checkpoint['state_dict'])
        # self.net = torch.jit.load('crnn_lite_gpu.pt')
        self.net.to(self.device)
        self.net.eval()
        sample_input = torch.zeros(
            (2, img_channel, img_h, img_w)).to(self.device)
        self.net.get_batch_max_length(sample_input)
Exemple #4
0
 def __init__(self, opt):
     if 'CTC' in opt.Prediction:
         self.converter = CTCLabelConverter(opt.character)
     else:
         self.converter = AttnLabelConverter(opt.character)
     opt.num_class = len(self.converter.character)
     if opt.rgb:
         opt.input_channel = 3
     super().__init__(opt)
     self = torch.nn.DataParallel(self).to(device)
     print('loading pretrained model from %s' % opt.saved_model)
     self.load_state_dict(torch.load(opt.saved_model, map_location=device))
     self.opt = opt
Exemple #5
0
def init_model(args):
    """ model configuration """
    if 'CTC' in args.Prediction:
        converter = CTCLabelConverter(args.character)
    else:
        converter = AttnLabelConverter(args.character)
    args.num_class = len(converter.character)

    if args.rgb:
        args.input_channel = 3
    model = Model(args)
    print('model input parameters', args.imgH, args.imgW, args.num_fiducial,
          args.input_channel, args.output_channel, args.hidden_size,
          args.num_class, args.batch_max_length, args.Transformation,
          args.FeatureExtraction, args.SequenceModeling, args.Prediction)
    try:
        model = torch.nn.DataParallel(model).to(device)
    except RuntimeError:
        raise RuntimeError(device)

    # load model
    print('loading pretrained model from %s' % args.saved_model)
    model.load_state_dict(torch.load(args.saved_model, map_location=device))

    # prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
    AlignCollate_demo = AlignCollate(imgH=args.imgH,
                                     imgW=args.imgW,
                                     keep_ratio_with_pad=args.PAD)
    model.eval()
    return converter, model, AlignCollate_demo
Exemple #6
0
def main(config):
    train_loader, eval_loader = get_dataloader(config['data_loader']['type'], config['data_loader']['args'])
    if os.path.isfile(config['data_loader']['args']['alphabet']):
        config['data_loader']['args']['alphabet'] = str(np.load(config['data_loader']['args']['alphabet']))

    prediction_type = config['arch']['args']['prediction']['type']
    # label转换器设置
    if prediction_type == 'CTC':
        converter = CTCLabelConverter(config['data_loader']['args']['alphabet'])
    else:
        converter = AttnLabelConverter(config['data_loader']['args']['alphabet'])
    num_class = len(converter.character)

    # loss 设置
    if prediction_type == 'CTC':
        criterion = CTCLoss(zero_infinity=True).cuda()
    else:
        criterion = CrossEntropyLoss(ignore_index=0).cuda()  # ignore [GO] token = ignore index 0

    model = get_model(num_class, config)

    config['name'] = config['name'] + '_' + model.name
    trainer = Trainer(config=config,
                      model=model,
                      criterion=criterion,
                      train_loader=train_loader,
                      val_loader=eval_loader,
                      converter=converter,
                      weights_init=weights_init)
    trainer.train()
Exemple #7
0
def test(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)
    model = Model(opt.imgH,
                  opt.imgW,
                  opt.input_channel,
                  opt.output_channel,
                  opt.hidden_size,
                  opt.num_class,
                  opt.batch_max_length,
                  Transformation=opt.Transformation,
                  FeatureExtraction=opt.FeatureExtraction,
                  SequenceModeling=opt.SequenceModeling,
                  Prediction=opt.Prediction)
    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel,
          opt.output_channel, opt.hidden_size, opt.num_class,
          opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model).cuda()

    # load model
    if opt.saved_model != '':
        print('loading pretrained model from %s' % opt.saved_model)
        model.load_state_dict(torch.load(opt.saved_model))
        opt.name = '_'.join(opt.saved_model.split('/')[1:])
    # print(model)
    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.name}/')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = CTCLoss(reduction='sum')
    else:
        criterion = torch.nn.CrossEntropyLoss(
            ignore_index=0).cuda()  # ignore [GO] token = ignore index 0
    """ evaluation """
    model.eval()
    if opt.benchmark_all_eval:  # evaluation with 10 benchmark evaluation datasets
        benchmark_all_eval(model, criterion, converter, opt)
    else:
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)
        eval_data = hierarchical_dataset(root=opt.eval_data, opt=opt)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data,
            batch_size=opt.batch_size,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation,
            pin_memory=True)
        _, accuracy_by_best_model, _, _, _, _, _ = validation(
            model, criterion, evaluation_loader, converter, opt)

        print(accuracy_by_best_model)
        with open('./result/{0}/log_evaluation.txt'.format(opt.name),
                  'a') as log:
            log.write(str(accuracy_by_best_model) + '\n')
Exemple #8
0
def test(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    elif 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
    elif 'Transformer' in opt.Prediction or 'Test' in opt.Prediction or 'Transformer' in opt.SequenceModeling:
        converter = TransformerLabelConverter(opt.character)

    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    opt.experiment_name = '_'.join(opt.saved_model.split('/')[1:])
    # print(model)
    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.experiment_name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.experiment_name}/')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 2
    """ evaluation """
    model.eval()
    with torch.no_grad():
        if opt.benchmark_all_eval:  # evaluation with 10 benchmark evaluation datasets
            benchmark_all_eval(model, criterion, converter, opt)
        else:
            log = open(f'./result/{opt.experiment_name}/log_evaluation.txt',
                       'a')
            AlignCollate_evaluation = AlignCollate(imgH=opt.imgH,
                                                   imgW=opt.imgW,
                                                   keep_ratio_with_pad=opt.PAD)
            eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data,
                                                            opt=opt)
            evaluation_loader = torch.utils.data.DataLoader(
                eval_data,
                batch_size=opt.batch_size,
                shuffle=False,
                num_workers=int(opt.workers),
                collate_fn=AlignCollate_evaluation,
                pin_memory=True)
            _, accuracy_by_best_model, _, _, _, _, _, _ = validation(
                model, criterion, evaluation_loader, converter, opt)
            log.write(eval_data_log)
            print(f'{accuracy_by_best_model:0.3f}')
            log.write(f'{accuracy_by_best_model:0.3f}\n')
            log.close()
Exemple #9
0
def loader():
    opt = config()
    """ model configuration """
    if 'CTC' in opt['Prediction']:
        converter = CTCLabelConverter(opt['character'])
    else:
        converter = AttnLabelConverter(opt['character'])
    opt['num_class'] = len(converter.character)

    if opt['rgb'] == 3:
        opt['input_channel'] = 3
    model = Model(opt)

    model = torch.nn.DataParallel(model).to(device)

    # load model
    #print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt['saved_model'], map_location=device))
    length_for_pred = torch.IntTensor([opt['batch_max_length']] *
                                      opt['batch_size']).to(device)
    text_for_pred = torch.LongTensor(
        opt['batch_size'], opt['batch_max_length'] + 1).fill_(0).to(device)
    model.eval()

    return model, converter, length_for_pred, text_for_pred, opt
Exemple #10
0
def generate_recognition_model(args):
    if 'CTC' in args.Prediction:
        converter = CTCLabelConverter(args.character)
    else:
        converter = AttnLabelConverter(args.character)
    args.num_class = len(converter.character)

    if args.rgb:
        args.input_channel = 3
    model = Model(args)
    if 'CTC' in args.Prediction:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).cuda()
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).cuda()

    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num: {}'.format(sum(params_num)))
    optimizer = torch.optim.Adadelta(filtered_parameters,
                                     lr=args.reco_lr,
                                     rho=0.95,
                                     eps=0.999)
    return model, converter, criterion, optimizer
    def initialize(self):

        start = time.time()

        # self.saved_model = '/home_hongdo/sungeun.kim/checkpoints/ocr/ocr_train_addKorean_synth/best_accuracy.pth'
        # self.craft_trained_model = '/home_hongdo/sungeun.kim/checkpoints/ocr/ocr_train/craft_mlt_25k.pth'
        # self.saved_model = '/home_hongdo/sungeun.kim/checkpoints/ocr/ocr_train_v2/best_accuracy.pth'
        # self.craft_trained_model = '/home_hongdo/sungeun.kim/checkpoints/ocr/ocr_train_v2/best_accuracy_craft.pth'
        #
        # official

        self.saved_model = './data_ocr/best_accuracy.pth'
        self.craft_trained_model = './data_ocr/best_accuracy_craft.pth'
        self.logfilepath = './data_ocr/log_ocr_result.txt'
        """ vocab / character number configuration """
        # if self.sensitive:
        #     self.character = string.printable[:-6]  # same with ASTER setting (use 94 char).

        cudnn.benchmark = True
        cudnn.deterministic = True

        self.num_gpu = torch.cuda.device_count()
        """ model configuration """
        # detetion
        self.net = CRAFT(self)  # initialize
        print('Loading detection weights from checkpoint ' +
              self.craft_trained_model)
        self.net.load_state_dict(
            copyStateDict(
                torch.load(self.craft_trained_model,
                           map_location=self.device)))
        self.net = torch.nn.DataParallel(self.net).to(self.device)

        self.converter = AttnLabelConverter(self.character)
        self.num_class = len(self.converter.character)

        if self.rgb:
            self.input_channel = 3
        self.model = Model(self, self.num_class)
        # print('model input parameters', self.imgH, self.imgW, self.num_fiducial, self.input_channel, self.output_channel,
        #       self.hidden_size, self.num_class, self.batch_max_length)

        # load model
        self.model = torch.nn.DataParallel(self.model).to(self.device)
        print('Loading recognition weights from checkpoint %s' %
              self.saved_model)
        self.model.load_state_dict(
            torch.load(self.saved_model, map_location=self.device))

        if torch.cuda.is_available():
            self.model = self.model.cuda()
            self.net = self.net.cuda()
            cudnn.benchmark = False

        # print('Initialization Done! It tooks {:.2f} mins.\n'.format((time.time() - start) / 60))
        print(
            'Initialization Done! It tooks {:.2f} sec.\n'.format(time.time() -
                                                                 start))
        return True
def recognition(image):

    converter = AttnLabelConverter(args.character)
    args.num_class = len(converter.character)
    if args.rgb:
        args.input_channel = 3
    model = Model(args)

    model = torch.nn.DataParallel(model).to(device)
    model.load_state_dict(torch.load(args.model_dir, map_location=device))

    transformer = resizeNormalize((100, 32))

    #Convert RGB images to Gray Scale which is neccesary for our convolution layers.
    if image.mode == 'RGB':
        image = image.convert('L')

    image = transformer(image)
    batch_size = image.size(0)
    if torch.cuda.is_available():
        image = image.cuda()

    image = image.view(1, *image.size())
    image = Variable(image)

    model.eval()

    length_for_pred = torch.IntTensor([args.batch_max_length] *
                                      batch_size).to(device)
    text_for_pred = torch.LongTensor(batch_size, args.batch_max_length +
                                     1).fill_(0).to(device)
    preds = model(image, text_for_pred, is_train=False)

    _, preds_index = preds.max(2)

    preds_str = converter.decode(preds_index, length_for_pred)
    preds_prob = F.softmax(preds, dim=2)

    text_prediction = preds_str[0].replace("[s]", "")

    return text_prediction
Exemple #13
0
def main(config):
    import torch

    from modeling import build_model, build_loss
    from data_loader import get_dataloader
    from trainer import Trainer
    from utils import CTCLabelConverter, AttnLabelConverter, load
    if os.path.isfile(config['dataset']['alphabet']):
        config['dataset']['alphabet'] = ''.join(
            load(config['dataset']['alphabet']))

    prediction_type = config['arch']['head']['type']

    # loss 设置
    criterion = build_loss(config['loss'])
    if prediction_type == 'CTC':
        converter = CTCLabelConverter(config['dataset']['alphabet'])
    elif prediction_type == 'Attn':
        converter = AttnLabelConverter(config['dataset']['alphabet'])
    else:
        raise NotImplementedError
    img_channel = 3 if config['dataset']['train']['dataset']['args'][
        'img_mode'] != 'GRAY' else 1
    config['arch']['backbone']['in_channels'] = img_channel
    config['arch']['head']['n_class'] = len(converter.character)
    # model = get_model(img_channel, len(converter.character), config['arch']['args'])
    model = build_model(config['arch'])
    img_h, img_w = 32, 100
    for process in config['dataset']['train']['dataset']['args'][
            'pre_processes']:
        if process['type'] == "Resize":
            img_h = process['args']['img_h']
            img_w = process['args']['img_w']
            break
    sample_input = torch.zeros((2, img_channel, img_h, img_w))
    num_label = model.get_batch_max_length(sample_input)
    train_loader = get_dataloader(config['dataset']['train'], num_label)
    assert train_loader is not None
    if 'validate' in config['dataset'] and config['dataset']['validate'][
            'dataset']['args']['data_path'][0] is not None:
        validate_loader = get_dataloader(config['dataset']['validate'],
                                         num_label)
    else:
        validate_loader = None

    trainer = Trainer(config=config,
                      model=model,
                      criterion=criterion,
                      train_loader=train_loader,
                      validate_loader=validate_loader,
                      sample_input=sample_input,
                      converter=converter)
    trainer.train()
Exemple #14
0
    def __init__(self, model_path: str, gpu_id=None):
        '''
        初始化pytorch模型
        :param model_path: 模型地址(可以是模型的参数或者参数和计算图一起保存的文件)
        :param alphabet: 字母表
        :param img_shape: 图像的尺寸(w,h)
        :param net: 网络计算图,如果在model_path中指定的是参数的保存路径,则需要给出网络的计算图
        :param img_channel: 图像的通道数: 1,3
        :param gpu_id: 在哪一块gpu上运行
        '''
        self.gpu_id = gpu_id
        checkpoint = torch.load(model_path)

        if self.gpu_id is not None and isinstance(
                self.gpu_id, int) and torch.cuda.is_available():
            self.device = torch.device("cuda:%s" % self.gpu_id)
        else:
            self.device = torch.device("cpu")
        print('device:', self.device)

        config = checkpoint['config']
        self.prediction_type = config['arch']['args']['prediction']['type']
        if self.prediction_type == 'CTC':
            self.converter = CTCLabelConverter(
                config['data_loader']['args']['alphabet'])
        else:
            self.converter = AttnLabelConverter(
                config['data_loader']['args']['alphabet'])
        num_class = len(self.converter.character)

        self.net = get_model(num_class, config)

        self.img_w = config['data_loader']['args']['dataset']['img_w']
        self.img_h = config['data_loader']['args']['dataset']['img_h']
        self.img_channel = config['data_loader']['args']['dataset'][
            'img_channel']

        self.net.load_state_dict(checkpoint['state_dict'])
        self.net.to(self.device)
        self.net.eval()
    def __init__(self):

        # model settings #
        self.path_model = 'model/TPS-ResNet-BiLSTM-Attn.pth'
        self.batch_size = 1
        self.batch_max_length = 25
        self.imgH = 32
        self.imgW = 100
        self.character = '0123456789abcdefghijklmnopqrstuvwxyz'
        self.Transformation = 'TPS'
        self.FeatureExtraction = 'ResNet'
        self.SequenceModeling = 'BiLSTM'
        self.Prediction = 'Attn'
        self.num_fiducial = 20
        self.input_channel = 1
        self.output_channel = 512
        self.hidden_size = 256
        self.device = torch.device(
            'cuda:0' if torch.cuda.is_available() else 'cpu')
        parser = argparse.ArgumentParser()
        parser.add_argument('--rgb', action='store_true', help='use rgb input')
        self.opt = parser.parse_args()

        self.opt.num_gpu = torch.cuda.device_count()

        # load model
        self.converter = AttnLabelConverter(self.character)
        self.opt.num_class = len(self.converter.character)

        if self.opt.rgb:
            self.opt.input_channel = 3
        self.model = Model(self.opt)
        self.model = torch.nn.DataParallel(self.model).to('cuda:0')

        # load model
        self.model.load_state_dict(torch.load(self.path_model))
def init_model(model_path):
    global model,converter,batch_max_length,imgW,imgH,transform

    cudnn.benchmark = True
    cudnn.deterministic = True

    """ model configuration """
    converter = AttnLabelConverter(character)
    num_class = len(converter.character)

    model = Model(imgW, imgH, num_class,batch_max_length)
    model = model = torch.nn.DataParallel(model).to(device)

    # load model
    model.load_state_dict(torch.load(model_path, map_location=device))


    transform = ResizeNormalize((imgW, imgH))
def transform_to_onnx(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt).to(device)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    
    # change output, so that OpenCV sample can run it correctly
    pose_model = Post_Model(model)
    model = pose_model
    # transform to onnx
    model.eval()
    
    batch_size = 1
    channel = 1
    h_size = 32
    w_size = 100
    dummy_input = torch.randn(batch_size, channel, h_size, w_size, requires_grad=True).to(device)

    output_path = "./onnx_output"
    if not os.path.exists(output_path):
        os.mkdir(output_path)

    onnx_output = os.path.join(output_path, opt.onnx_name)
    print("output path :", onnx_output)
    dummy_output = model(dummy_input)
    print("output size :", dummy_output.size())
    torch.onnx.export(model, dummy_input, onnx_output, verbose=True, export_params=True, opset_version=11, do_constant_folding=True, input_names = ["input"], output_names = ["output"])
    print("Transform Successfully!")
def demo(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))

    # prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
    AlignCollate_demo = AlignCollate(imgH=opt.imgH,
                                     imgW=opt.imgW,
                                     keep_ratio_with_pad=opt.PAD)
    demo_data = RawDataset(root=opt.image_folder, opt=opt)  # use RawDataset
    demo_loader = torch.utils.data.DataLoader(demo_data,
                                              batch_size=opt.batch_size,
                                              shuffle=False,
                                              num_workers=int(opt.workers),
                                              collate_fn=AlignCollate_demo,
                                              pin_memory=True)

    # predict
    model.eval()
    with torch.no_grad():
        for image_tensors, image_path_list in demo_loader:
            batch_size = image_tensors.size(0)
            image = image_tensors.to(device)
            # For max length prediction
            length_for_pred = torch.IntTensor([opt.batch_max_length] *
                                              batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length +
                                             1).fill_(0).to(device)

            if 'CTC' in opt.Prediction:
                preds = model(image, text_for_pred)

                # Select max probabilty (greedy decoding) then decode index to character
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                _, preds_index = preds.max(2)
                # preds_index = preds_index.view(-1)
                preds_str = converter.decode(preds_index, preds_size)

            else:
                preds = model(image, text_for_pred, is_train=False)

                # select max probabilty (greedy decoding) then decode index to character
                _, preds_index = preds.max(2)
                preds_str = converter.decode(preds_index, length_for_pred)

            log = open(f'./log_demo_result.txt', 'a')
            dashed_line = '-' * 80
            head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'

            print(f'{dashed_line}\n{head}\n{dashed_line}')
            log.write(f'{dashed_line}\n{head}\n{dashed_line}\n')

            preds_prob = F.softmax(preds, dim=2)
            preds_max_prob, _ = preds_prob.max(dim=2)
            for img_name, pred, pred_max_prob in zip(image_path_list,
                                                     preds_str,
                                                     preds_max_prob):
                if 'Attn' in opt.Prediction:
                    pred_EOS = pred.find('[s]')
                    pred = pred[:
                                pred_EOS]  # prune after "end of sentence" token ([s])
                    pred_max_prob = pred_max_prob[:pred_EOS]

                # calculate confidence score (= multiply of pred_max_prob)
                confidence_score = pred_max_prob.cumprod(dim=0)[-1]

                print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}')
                log.write(
                    f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n')
                custom_output.write(
                    f'{img_name}\t{pred}\t{confidence_score:0.4f}\n')
            log.close()
Exemple #19
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            converter = CTCLabelConverterForBaiduWarpctc(opt.character)
        else:
            converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            # need to install warpctc. see our guideline.
            from warpctc_pytorch import CTCLoss
            criterion = CTCLoss()
        else:
            criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            if opt.baiduCTC:
                preds = preds.permute(1, 0, 2)  # to use CTCLoss format
                cost = criterion(preds, text, preds_size, length) / batch_size
            else:
                preds = preds.log_softmax(2).permute(1, 0, 2)
                cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(),
                f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Exemple #20
0
class PytorchNet:
    def __init__(self, model_path, gpu_id=None):
        """
        初始化模型
        :param model_path: 模型地址
        :param gpu_id: 在哪一块gpu上运行
        """
        checkpoint = torch.load(model_path)
        print(f"load {checkpoint['epoch']} epoch params")
        config = checkpoint['config']
        alphabet = config['dataset']['alphabet']
        if gpu_id is not None and isinstance(
                gpu_id, int) and torch.cuda.is_available():
            self.device = torch.device("cuda:%s" % gpu_id)
        else:
            self.device = torch.device("cpu")
        print('device:', self.device)

        self.transform = []
        for t in config['dataset']['train']['dataset']['args']['transforms']:
            if t['type'] in ['ToTensor', 'Normalize']:
                self.transform.append(t)
        self.transform = get_transforms(self.transform)

        self.gpu_id = gpu_id
        img_h, img_w = 32, 100
        for process in config['dataset']['train']['dataset']['args'][
                'pre_processes']:
            if process['type'] == "Resize":
                img_h = process['args']['img_h']
                img_w = process['args']['img_w']
                break
        self.img_w = img_w
        self.img_h = img_h
        self.img_mode = config['dataset']['train']['dataset']['args'][
            'img_mode']
        self.alphabet = alphabet
        img_channel = 3 if config['dataset']['train']['dataset']['args'][
            'img_mode'] != 'GRAY' else 1

        if config['arch']['args']['prediction']['type'] == 'CTC':
            self.converter = CTCLabelConverter(config['dataset']['alphabet'])
        elif config['arch']['args']['prediction']['type'] == 'Attn':
            self.converter = AttnLabelConverter(config['dataset']['alphabet'])
        self.net = get_model(img_channel, len(self.converter.character),
                             config['arch']['args'])
        self.net.load_state_dict(checkpoint['state_dict'])
        # self.net = torch.jit.load('crnn_lite_gpu.pt')
        self.net.to(self.device)
        self.net.eval()
        sample_input = torch.zeros(
            (2, img_channel, img_h, img_w)).to(self.device)
        self.net.get_batch_max_length(sample_input)

    def predict(self, img_path, model_save_path=None):
        """
        对传入的图像进行预测,支持图像地址和numpy数组
        :param img_path: 图像地址
        :return:
        """
        assert os.path.exists(img_path), 'file is not exists'
        img = self.pre_processing(img_path)
        tensor = self.transform(img)
        tensor = tensor.unsqueeze(dim=0)

        tensor = tensor.to(self.device)
        preds, tensor_img = self.net(tensor)

        preds = preds.softmax(dim=2).detach().cpu().numpy()
        # result = decode(preds, self.alphabet, raw=True)
        # print(result)
        result = self.converter.decode(preds)
        if model_save_path is not None:
            # 输出用于部署的模型
            save(self.net, tensor, model_save_path)
        return result, tensor_img

    def pre_processing(self, img_path):
        """
        对图片进行处理,先按照高度进行resize,resize之后如果宽度不足指定宽度,就补黑色像素,否则就强行缩放到指定宽度
        :param img_path: 图片地址
        :return:
        """
        img = cv2.imread(img_path, 1 if self.img_mode != 'GRAY' else 0)
        if self.img_mode == 'RGB':
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        h, w = img.shape[:2]
        ratio_h = float(self.img_h) / h
        new_w = int(w * ratio_h)

        if new_w < self.img_w:
            img = cv2.resize(img, (new_w, self.img_h))
            step = np.zeros((self.img_h, self.img_w - new_w, img.shape[-1]),
                            dtype=img.dtype)
            img = np.column_stack((img, step))
        else:
            img = cv2.resize(img, (self.img_w, self.img_h))
        return img
Exemple #21
0
def train(opt):
    """ dataset preparation """
    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #import ipdb;ipdb.set_trace()

    train_dataset = Batch_Balanced_Dataset(opt)

    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    print('-' * 80)
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU

    model = torch.nn.DataParallel(model).to(device)
    model.train()

    if opt.continue_model != '':
        print(f'loading pretrained model from {opt.continue_model}')
        model.load_state_dict(torch.load(opt.continue_model))
    print("Model:")
    #print(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a',
              encoding="utf-8") as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.continue_model != '':
        start_iter = int(opt.continue_model.split('_')[-1].split('.')[0])
        print(f'continue to train, start_iter: {start_iter}')

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = 1e+6
    i = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()

        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)
        #import ipdb;ipdb.set_trace()

        if 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)

            preds_size = torch.IntTensor([preds.size(1)] *
                                         batch_size).to(device)
            preds = preds.permute(1, 0, 2)  # to use CTCLoss format

            # To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16
            torch.backends.cudnn.enabled = False
            cost = criterion(preds, text, preds_size, length)
            torch.backends.cudnn.enabled = True

        else:

            preds = model(image, text[:, :-1])  # align with Attention.forward

            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            print(
                f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
            )
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a',
                      encoding="utf-8") as log:
                log.write(
                    f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                )
                loss_avg.reset()

                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                for pred, gt in zip(preds[:5], labels[:5]):
                    if 'Attn' in opt.Prediction:
                        pred = pred[:pred.find('[s]')]
                        gt = gt[:gt.find('[s]')]
                    print(f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}')
                    #pred = pred.encode('utf-8')
                    #gt = gt.encode('utf-8')
                    log.write(
                        f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}\n')

                valid_log = f'[{i}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                print(valid_log)
                log.write(valid_log + '\n')

                # keep best accuracy model
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                    )
                if current_norm_ED < best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                    )
                best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                print(best_model_log)
                log.write(best_model_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
def train(opt):
    plotDir = os.path.join(opt.exp_dir,opt.exp_name,'plots')
    if not os.path.exists(plotDir):
        os.makedirs(plotDir)
    
    lib.print_model_settings(locals().copy())

    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #considering the real images for discriminator
    opt.batch_size = opt.batch_size*2

    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    
    model = AdaINGen(opt)
    ocrModel = Model(opt)
    disModel = MsImageDisV1(opt)
    
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    
    #  weight initialization
    for currModel in [model, ocrModel, disModel]:
        for name, param in currModel.named_parameters():
            if 'localization_fc2' in name:
                print(f'Skip {name} as it is already initialized')
                continue
            try:
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if 'weight' in name:
                    param.data.fill_(1)
                continue
    
    
    # data parallel for multi-GPU
    ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    if not opt.ocrFixed:
        ocrModel.train()
    else:
        ocrModel.module.Transformation.eval()
        ocrModel.module.FeatureExtraction.eval()
        ocrModel.module.AdaptiveAvgPool.eval()
        # ocrModel.module.SequenceModeling.eval()
        ocrModel.module.Prediction.eval()

    model = torch.nn.DataParallel(model).to(device)
    model.train()
    
    disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    if opt.modelFolderFlag:
        
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]
        
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_dis.pth")))>0:
            opt.saved_dis_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_dis.pth"))[-1]

    #loading pre-trained model
    if opt.saved_ocr_model != '' and opt.saved_ocr_model != 'None':
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        if opt.FT:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model), strict=False)
        else:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model))
    print("OCRModel:")
    print(ocrModel)

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_synth_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_synth_model))
    print("SynthModel:")
    print(model)

    if opt.saved_dis_model != '' and opt.saved_dis_model != 'None':
        print(f'loading pretrained discriminator model from {opt.saved_dis_model}')
        if opt.FT:
            disModel.load_state_dict(torch.load(opt.saved_dis_model), strict=False)
        else:
            disModel.load_state_dict(torch.load(opt.saved_dis_model))
    print("DisModel:")
    print(disModel)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    
    recCriterion = torch.nn.L1Loss()
    styleRecCriterion = torch.nn.L1Loss()

    # loss averager
    loss_avg_ocr = Averager()
    loss_avg = Averager()
    loss_avg_dis = Averager()

    loss_avg_ocrRecon_1 = Averager()
    loss_avg_ocrRecon_2 = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_styRecon = Averager()

    ##---------------------------------------##
    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optim=='adam':
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("SynthOptimizer:")
    print(optimizer)
    

    #filter parameters for OCR training
    ocr_filtered_parameters = []
    ocr_params_num = []
    for p in filter(lambda p: p.requires_grad, ocrModel.parameters()):
        ocr_filtered_parameters.append(p)
        ocr_params_num.append(np.prod(p.size()))
    print('OCR Trainable params num : ', sum(ocr_params_num))


    # setup optimizer
    if opt.optim=='adam':
        ocr_optimizer = optim.Adam(ocr_filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        ocr_optimizer = optim.Adadelta(ocr_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("OCROptimizer:")
    print(ocr_optimizer)

    #filter parameters for OCR training
    dis_filtered_parameters = []
    dis_params_num = []
    for p in filter(lambda p: p.requires_grad, disModel.parameters()):
        dis_filtered_parameters.append(p)
        dis_params_num.append(np.prod(p.size()))
    print('Dis Trainable params num : ', sum(dis_params_num))

    # setup optimizer
    if opt.optim=='adam':
        dis_optimizer = optim.Adam(dis_filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        dis_optimizer = optim.Adadelta(dis_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("DisOptimizer:")
    print(dis_optimizer)
    ##---------------------------------------##

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    ocr_scheduler = get_scheduler(ocr_optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    best_accuracy_ocr = -1
    best_norm_ED_ocr = -1
    iteration = start_iter
    cntr=0


    while(True):
        # train part
        
        if opt.lr_policy !="None":
            scheduler.step()
            ocr_scheduler.step()
            dis_scheduler.step()
            
        image_tensors_all, labels_1_all, labels_2_all = train_dataset.get_batch()
        
        # ## comment
        # pdb.set_trace()
        # for imgCntr in range(image_tensors.shape[0]):
        #     save_image(tensor2im(image_tensors[imgCntr]),'temp/'+str(imgCntr)+'.png')
        # pdb.set_trace()
        # ###
        # print(cntr)
        cntr+=1
        disCnt = int(image_tensors_all.size(0)/2)
        image_tensors, image_tensors_real, labels_gt, labels_2 = image_tensors_all[:disCnt], image_tensors_all[disCnt:disCnt+disCnt], labels_1_all[:disCnt], labels_2_all[:disCnt]

        image = image_tensors.to(device)
        image_real = image_tensors_real.to(device)
        batch_size = image.size(0)

        
        ##-----------------------------------##
        #generate text(labels) from ocr.forward
        if opt.ocrFixed:
            # ocrModel.eval()
            length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
            
            if 'CTC' in opt.Prediction:
                preds = ocrModel(image, text_for_pred)
                preds = preds[:, :text_for_loss.shape[1] - 1, :]
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                _, preds_index = preds.max(2)
                labels_1 = converter.decode(preds_index.data, preds_size.data)
            else:
                preds = ocrModel(image, text_for_pred, is_train=False)
                _, preds_index = preds.max(2)
                labels_1 = converter.decode(preds_index, length_for_pred)
                for idx, pred in enumerate(labels_1):
                    pred_EOS = pred.find('[s]')
                    labels_1[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
            # ocrModel.train()
        else:
            labels_1 = labels_gt
        
        ##-----------------------------------##

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        
        #forward pass from style and word generator
        images_recon_1, images_recon_2, style = model(image, text_1, text_2)

        if 'CTC' in opt.Prediction:
            
            if not opt.ocrFixed:
                #ocr training with orig image
                preds_ocr = ocrModel(image, text_1)
                preds_size_ocr = torch.IntTensor([preds_ocr.size(1)] * batch_size)
                preds_ocr = preds_ocr.log_softmax(2).permute(1, 0, 2)

                ocrCost_train = ocrCriterion(preds_ocr, text_1, preds_size_ocr, length_1)

            
            #content loss for reconstructed images
            preds_1 = ocrModel(images_recon_1, text_1)
            preds_size_1 = torch.IntTensor([preds_1.size(1)] * batch_size)
            preds_1 = preds_1.log_softmax(2).permute(1, 0, 2)

            preds_2 = ocrModel(images_recon_2, text_2)
            preds_size_2 = torch.IntTensor([preds_2.size(1)] * batch_size)
            preds_2 = preds_2.log_softmax(2).permute(1, 0, 2)
            ocrCost_1 = ocrCriterion(preds_1, text_1, preds_size_1, length_1)
            ocrCost_2 = ocrCriterion(preds_2, text_2, preds_size_2, length_2)
            # ocrCost = 0.5*( ocrCost_1 + ocrCost_2 )

        else:
            if not opt.ocrFixed:
                #ocr training with orig image
                preds_ocr = ocrModel(image, text_1[:, :-1])  # align with Attention.forward
                target_ocr = text_1[:, 1:]  # without [GO] Symbol

                ocrCost_train = ocrCriterion(preds_ocr.view(-1, preds_ocr.shape[-1]), target_ocr.contiguous().view(-1))

            #content loss for reconstructed images
            preds_1 = ocrModel(images_recon_1, text_1[:, :-1], is_train=False)  # align with Attention.forward
            target_1 = text_1[:, 1:]  # without [GO] Symbol

            preds_2 = ocrModel(images_recon_2, text_2[:, :-1], is_train=False)  # align with Attention.forward
            target_2 = text_2[:, 1:]  # without [GO] Symbol

            ocrCost_1 = ocrCriterion(preds_1.view(-1, preds_1.shape[-1]), target_1.contiguous().view(-1))
            ocrCost_2 = ocrCriterion(preds_2.view(-1, preds_2.shape[-1]), target_2.contiguous().view(-1))
            # ocrCost = 0.5*(ocrCost_1+ocrCost_2)
        
        if not opt.ocrFixed:
            #training OCR
            ocrModel.zero_grad()
            ocrCost_train.backward()
            # torch.nn.utils.clip_grad_norm_(ocrModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
            ocr_optimizer.step()
            #if ocr is fixed; ignore this loss
            loss_avg_ocr.add(ocrCost_train)
        else:
            loss_avg_ocr.add(torch.tensor(0.0))

        
        #Domain discriminator: Dis update
        disModel.zero_grad()
        disCost = opt.disWeight*0.5*(disModel.module.calc_dis_loss(images_recon_1.detach(), image_real) + disModel.module.calc_dis_loss(images_recon_2.detach(), image))
        disCost.backward()
        # torch.nn.utils.clip_grad_norm_(disModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        dis_optimizer.step()
        loss_avg_dis.add(disCost)
        
        # #[Style Encoder] + [Word Generator] update
        #Adversarial loss
        disGenCost = 0.5*(disModel.module.calc_gen_loss(images_recon_1)+disModel.module.calc_gen_loss(images_recon_2))

        #Input reconstruction loss
        recCost = recCriterion(images_recon_1,image)

        #Pair style reconstruction loss
        if opt.styleReconWeight == 0.0:
            styleRecCost = torch.tensor(0.0)
        else:
            if opt.styleDetach:
                styleRecCost = styleRecCriterion(model(images_recon_2, None, None, styleFlag=True), style.detach())
            else:
                styleRecCost = styleRecCriterion(model(images_recon_2, None, None, styleFlag=True), style)

        #OCR Content cost
        ocrCost = 0.5*(ocrCost_1+ocrCost_2)

        cost = opt.ocrWeight*ocrCost + opt.reconWeight*recCost + opt.disWeight*disGenCost + opt.styleReconWeight*styleRecCost

        model.zero_grad()
        ocrModel.zero_grad()
        disModel.zero_grad()
        cost.backward()
        # torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        loss_avg.add(cost)

        #Individual losses
        loss_avg_ocrRecon_1.add(opt.ocrWeight*0.5*ocrCost_1)
        loss_avg_ocrRecon_2.add(opt.ocrWeight*0.5*ocrCost_2)
        loss_avg_gen.add(opt.disWeight*disGenCost)
        loss_avg_imgRecon.add(opt.reconWeight*recCost)
        loss_avg_styRecon.add(opt.styleReconWeight*styleRecCost)

        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            os.makedirs(os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    save_image(tensor2im(image[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_input_'+labels_gt[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_1[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_recon_'+labels_1[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_pair_'+labels_2[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                model.eval()
                ocrModel.module.Transformation.eval()
                ocrModel.module.FeatureExtraction.eval()
                ocrModel.module.AdaptiveAvgPool.eval()
                ocrModel.module.SequenceModeling.eval()
                ocrModel.module.Prediction.eval()
                disModel.eval()
                
                with torch.no_grad():                    
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation_synth_lrw_res(
                        iteration, model, ocrModel, disModel, recCriterion, styleRecCriterion, ocrCriterion, valid_loader, converter, opt)
                model.train()
                if not opt.ocrFixed:
                    ocrModel.train()
                else:
                #     ocrModel.module.Transformation.eval()
                #     ocrModel.module.FeatureExtraction.eval()
                #     ocrModel.module.AdaptiveAvgPool.eval()
                    ocrModel.module.SequenceModeling.train()
                #     ocrModel.module.Prediction.eval()

                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train OCR loss: {loss_avg_ocr.val():0.5f}, Train Synth loss: {loss_avg.val():0.5f}, Train Dis loss: {loss_avg_dis.val():0.5f}, Valid OCR loss: {valid_loss[0]:0.5f}, Valid Synth loss: {valid_loss[1]:0.5f}, Valid Dis loss: {valid_loss[2]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                

                current_model_log_ocr = f'{"Current_accuracy_OCR":17s}: {current_accuracy[0]:0.3f}, {"Current_norm_ED_OCR":17s}: {current_norm_ED[0]:0.2f}'
                current_model_log_1 = f'{"Current_accuracy_recon":17s}: {current_accuracy[1]:0.3f}, {"Current_norm_ED_recon":17s}: {current_norm_ED[1]:0.2f}'
                current_model_log_2 = f'{"Current_accuracy_pair":17s}: {current_accuracy[2]:0.3f}, {"Current_norm_ED_pair":17s}: {current_norm_ED[2]:0.2f}'
                
                #plotting
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Loss'), loss_avg_ocr.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Synth-Loss'), loss_avg.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Recon1-Loss'), loss_avg_ocrRecon_1.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Recon2-Loss'), loss_avg_ocrRecon_2.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-ImgRecon1-Loss'), loss_avg_imgRecon.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-StyRecon2-Loss'), loss_avg_styRecon.val().item())

                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Loss'), valid_loss[0].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Synth-Loss'), valid_loss[1].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Dis-Loss'), valid_loss[2].item())

                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Recon1-Loss'), valid_loss[3].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Recon2-Loss'), valid_loss[4].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Gen-Loss'), valid_loss[5].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-ImgRecon1-Loss'), valid_loss[6].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-StyRecon2-Loss'), valid_loss[7].item())

                lib.plot.plot(os.path.join(plotDir,'Orig-OCR-WordAccuracy'), current_accuracy[0])
                lib.plot.plot(os.path.join(plotDir,'Recon-OCR-WordAccuracy'), current_accuracy[1])
                lib.plot.plot(os.path.join(plotDir,'Pair-OCR-WordAccuracy'), current_accuracy[2])

                lib.plot.plot(os.path.join(plotDir,'Orig-OCR-CharAccuracy'), current_norm_ED[0])
                lib.plot.plot(os.path.join(plotDir,'Recon-OCR-CharAccuracy'), current_norm_ED[1])
                lib.plot.plot(os.path.join(plotDir,'Pair-OCR-CharAccuracy'), current_norm_ED[2])
                

                # keep best accuracy model (on valid dataset)
                if current_accuracy[1] > best_accuracy:
                    best_accuracy = current_accuracy[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_dis.pth'))
                if current_norm_ED[1] > best_norm_ED:
                    best_norm_ED = current_norm_ED[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_dis.pth'))
                best_model_log = f'{"Best_accuracy_Recon":17s}: {best_accuracy:0.3f}, {"Best_norm_ED_Recon":17s}: {best_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy[0] > best_accuracy_ocr:
                    best_accuracy_ocr = current_accuracy[0]
                    if not opt.ocrFixed:
                        torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_ocr.pth'))
                if current_norm_ED[0] > best_norm_ED_ocr:
                    best_norm_ED_ocr = current_norm_ED[0]
                    if not opt.ocrFixed:
                        torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_ocr.pth'))
                best_model_log_ocr = f'{"Best_accuracy_ocr":17s}: {best_accuracy_ocr:0.3f}, {"Best_norm_ED_ocr":17s}: {best_norm_ED_ocr:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log_ocr}\n{current_model_log_1}\n{current_model_log_2}\n{best_model_log_ocr}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":32s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                
                for gt_ocr, pred_ocr, confidence_ocr, gt_1, pred_1, confidence_1, gt_2, pred_2, confidence_2 in zip(labels[0][:5], preds[0][:5], confidence_score[0][:5], labels[1][:5], preds[1][:5], confidence_score[1][:5], labels[2][:5], preds[2][:5], confidence_score[2][:5]):
                    if 'Attn' in opt.Prediction:
                        # gt_ocr = gt_ocr[:gt_ocr.find('[s]')]
                        pred_ocr = pred_ocr[:pred_ocr.find('[s]')]

                        # gt_1 = gt_1[:gt_1.find('[s]')]
                        pred_1 = pred_1[:pred_1.find('[s]')]

                        # gt_2 = gt_2[:gt_2.find('[s]')]
                        pred_2 = pred_2[:pred_2.find('[s]')]

                    predicted_result_log += f'{"ocr"}: {gt_ocr:27s} | {pred_ocr:25s} | {confidence_ocr:0.4f}\t{str(pred_ocr == gt_ocr)}\n'
                    predicted_result_log += f'{"recon"}: {gt_1:25s} | {pred_1:25s} | {confidence_1:0.4f}\t{str(pred_1 == gt_1)}\n'
                    predicted_result_log += f'{"pair"}: {gt_2:26s} | {pred_2:25s} | {confidence_2:0.4f}\t{str(pred_2 == gt_2)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

                loss_avg_ocr.reset()
                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_ocrRecon_1.reset()
                loss_avg_ocrRecon_2.reset()
                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_styRecon.reset()

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+5 == 0:
            torch.save(
                model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            if not opt.ocrFixed:
                torch.save(
                    ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_ocr.pth'))
            torch.save(
                disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_dis.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
def demo(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    model = torch.nn.DataParallel(model)
    if torch.cuda.is_available():
        model = model.cuda()

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model))

    # prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
    # AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    # demo_data = RawDataset(root=opt.image_folder, opt=opt)  # use RawDataset
    # demo_loader = torch.utils.data.DataLoader(
    #     demo_data, batch_size=opt.batch_size,
    #     shuffle=False,
    #     num_workers=int(opt.workers),
    #     collate_fn=AlignCollate_demo, pin_memory=True)

    demo_data = baidu_raw_dataset(root=opt.image_folder, opt=opt)
    demo_loader = torch.utils.data.DataLoader(demo_data,
                                              batch_size=opt.batch_size,
                                              shuffle=True,
                                              num_workers=int(opt.workers),
                                              collate_fn=BaiduCollate(
                                                  opt.imgH, keep_ratio=True),
                                              pin_memory=True)

    outf = open(opt.out_csv, 'w')
    # predict
    model.eval()
    for image_tensors, image_path_list in demo_loader:
        batch_size = image_tensors.size(0)
        with torch.no_grad():
            image = image_tensors.cuda()
            # For max length prediction
            length_for_pred = torch.cuda.IntTensor([opt.batch_max_length] *
                                                   batch_size)
            text_for_pred = torch.cuda.LongTensor(
                batch_size, opt.batch_max_length + 1).fill_(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text_for_pred).log_softmax(2)

            # Select max probabilty (greedy decoding) then decode index to character
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            _, preds_index = preds.permute(1, 0, 2).max(2)
            preds_index = preds_index.transpose(1, 0).contiguous().view(-1)
            preds_str = converter.decode(preds_index.data, preds_size.data)

        else:
            preds = model(image, text_for_pred, is_train=False)

            # select max probabilty (greedy decoding) then decode index to character
            _, preds_index = preds.max(2)
            preds_str = converter.decode(preds_index, length_for_pred)

        print('-' * 80)
        print('image_path\tpredicted_labels')
        print('-' * 80)
        for img_name, pred in zip(image_path_list, preds_str):
            if 'Attn' in opt.Prediction:
                pred = pred[:pred.find(
                    '[s]')]  # prune after "end of sentence" token ([s])

            print(f'{img_name}\t{pred}')

            content = os.path.basename(img_name) + '\t' + pred + '\n'
            outf.write(content)
            outf.flush()
    outf.close()
Exemple #24
0
    parser.add_argument(
        "--input_channel",
        type=int,
        default=1,
        help="the number of input channel of Feature extractor",
    )
    parser.add_argument(
        "--output_channel",
        type=int,
        default=512,
        help="the number of output channel of Feature extractor",
    )
    parser.add_argument(
        "--hidden_size", type=int, default=256, help="the size of the LSTM hidden state"
    )
    opt = parser.parse_args()

    if "CTC" in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    model = Model(opt)
    model.load_state_dict(torch.load(opt.model_path))
    model.to(device)
    model.eval()

    for img_path in os.listdir("task1_2_test(361p)"):
        predict("task1_2_test(361p)/" + img_path, model)
Exemple #25
0
def demoToTxt1(image_folder, saved_model, txtFile):  # sensitive
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_folder',
                        default=image_folder,
                        help='path to image_folder which contains text images')
    parser.add_argument('--workers',
                        type=int,
                        help='number of data loading workers',
                        default=4)
    parser.add_argument('--batch_size',
                        type=int,
                        default=100,
                        help='input batch size')
    parser.add_argument('--saved_model',
                        default=saved_model,
                        help="path to saved_model to evaluation")
    """ Data processing """
    parser.add_argument('--batch_max_length',
                        type=int,
                        default=20,
                        help='maximum-label-length')
    parser.add_argument('--imgH',
                        type=int,
                        default=32,
                        help='the height of the input image')
    parser.add_argument('--imgW',
                        type=int,
                        default=100,
                        help='the width of the input image')
    parser.add_argument('--rgb', action='store_true', help='use rgb input')
    parser.add_argument('--character',
                        type=str,
                        default='0123456789',
                        help='character label')
    parser.add_argument('--sensitive',
                        default=True,
                        help='for sensitive character mode')
    parser.add_argument('--PAD',
                        default=False,
                        action='store_true',
                        help='whether to keep ratio then pad for image resize')
    """ Model Architecture """
    parser.add_argument('--Transformation',
                        default='TPS',
                        type=str,
                        help='Transformation stage. None|TPS')
    parser.add_argument('--FeatureExtraction',
                        default='ResNet',
                        type=str,
                        help='FeatureExtraction stage. VGG|RCNN|ResNet')
    parser.add_argument('--SequenceModeling',
                        default='BiLSTM',
                        type=str,
                        help='SequenceModeling stage. None|BiLSTM')
    parser.add_argument('--Prediction',
                        default='CTC',
                        type=str,
                        help='Prediction stage. CTC|Attn')
    parser.add_argument('--num_fiducial',
                        type=int,
                        default=20,
                        help='number of fiducial points of TPS-STN')
    parser.add_argument(
        '--input_channel',
        type=int,
        default=1,
        help='the number of input channel of Feature extractor')
    parser.add_argument(
        '--output_channel',
        type=int,
        default=512,
        help='the number of output channel of Feature extractor')
    parser.add_argument('--hidden_size',
                        type=int,
                        default=256,
                        help='the size of the LSTM hidden state')

    opt = parser.parse_args()
    """ vocab / character number configuration """
    if opt.sensitive:
        opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
        # opt.character = string.printable[:-6]  # same with ASTER setting (use 94 char).

    cudnn.benchmark = True
    cudnn.deterministic = True
    opt.num_gpu = torch.cuda.device_count()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    model = torch.nn.DataParallel(model)
    if torch.cuda.is_available():
        model = model.cuda()

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model))

    # prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
    AlignCollate_demo = AlignCollate(imgH=opt.imgH,
                                     imgW=opt.imgW,
                                     keep_ratio_with_pad=opt.PAD)
    demo_data = RawDataset(root=opt.image_folder, opt=opt)  # use RawDataset
    demo_loader = torch.utils.data.DataLoader(demo_data,
                                              batch_size=opt.batch_size,
                                              shuffle=False,
                                              num_workers=int(opt.workers),
                                              collate_fn=AlignCollate_demo,
                                              pin_memory=True)

    # predict
    model.eval()
    saved_file = open(txtFile, 'w')
    for image_tensors, image_path_list in demo_loader:
        batch_size = image_tensors.size(0)
        with torch.no_grad():
            image = image_tensors.cuda()
            # For max length prediction
            length_for_pred = torch.cuda.IntTensor([opt.batch_max_length] *
                                                   batch_size)
            text_for_pred = torch.cuda.LongTensor(
                batch_size, opt.batch_max_length + 1).fill_(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text_for_pred).log_softmax(2)

            # Select max probabilty (greedy decoding) then decode index to character
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            _, preds_index = preds.permute(1, 0, 2).max(2)
            preds_index = preds_index.transpose(1, 0).contiguous().view(-1)
            preds_str = converter.decode(preds_index.data, preds_size.data)

        else:
            preds = model(image, text_for_pred, is_train=False)

            # select max probabilty (greedy decoding) then decode index to character
            _, preds_index = preds.max(2)
            preds_str = converter.decode(preds_index, length_for_pred)

        print('-' * 80)
        print('image_path\tpredicted_labels')
        print('-' * 80)

        for img_name, pred in zip(image_path_list, preds_str):
            if 'Attn' in opt.Prediction:
                pred = pred[:pred.find(
                    '[s]')]  # prune after "end of sentence" token ([s])
            print(f'{img_name}\t{pred}')
            saved_file.write(f'{img_name}\t{pred}\n')
def demo(opt):
    """ model configuration """
    lists = []  #목적지라고 생각하는 사진에서 인식한 text를 담을 배열

    converter = AttnLabelConverter(opt.character)  #ATTN

    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3

    model = Model(opt)  #model.py의 Model import

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling,
          opt.Prediction)  #파라미터 값 정보 출력

    model = torch.nn.DataParallel(model).to(device)  #GPU로 데이터 병렬 처리 진행

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model,
                                     map_location=device))  #모델의 매개변수를 불러옴

    AlignCollate_demo = AlignCollate(imgH=opt.imgH,
                                     imgW=opt.imgW,
                                     keep_ratio_with_pad=opt.PAD)
    demo_data1 = RawDataset(root=opt.image_folder1,
                            opt=opt)  # use RawDataset 간판탐지결과
    demo_data2 = RawDataset(root=opt.image_folder2,
                            opt=opt)  # use RawDataset 구글맵문자열탐지결과

    demo_loader1 = torch.utils.data.DataLoader(demo_data1,
                                               batch_size=opt.batch_size,
                                               shuffle=False,
                                               num_workers=int(opt.workers),
                                               collate_fn=AlignCollate_demo,
                                               pin_memory=True)
    demo_loader2 = torch.utils.data.DataLoader(demo_data2,
                                               batch_size=opt.batch_size,
                                               shuffle=False,
                                               num_workers=int(opt.workers),
                                               collate_fn=AlignCollate_demo,
                                               pin_memory=True)

    # predict
    model.eval()
    with torch.no_grad():
        for image_tensors, image_path_list in demo_loader1:
            batch_size = image_tensors.size(0)
            image = image_tensors.to(device)

            # For max length prediction
            length_for_pred = torch.IntTensor([opt.batch_max_length] *
                                              batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length +
                                             1).fill_(0).to(device)

            #ATTn
            preds = model(image, text_for_pred, is_train=False)

            # select max probabilty (greedy decoding) then decode index to character
            _, preds_index = preds.max(2)
            preds_str = converter.decode(preds_index, length_for_pred)

            log = open(f'./log_demo_result.txt', 'a')  #이어서 쓸수 있게 열고
            dashed_line = '-' * 80
            head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'

            print(f'{dashed_line}\n{head}\n{dashed_line}')  #테이블 양식 출력
            log.write(
                f'{dashed_line}\n{head}\n{dashed_line}\n')  #txt에 테이블 양식 저장

            preds_prob = F.softmax(preds, dim=2)
            preds_max_prob, _ = preds_prob.max(dim=2)
            for img_name, pred, pred_max_prob in zip(image_path_list,
                                                     preds_str,
                                                     preds_max_prob):
                pred_EOS = pred.find('[s]')
                pred = pred[:
                            pred_EOS]  # prune after "end of sentence" token ([s])
                pred_max_prob = pred_max_prob[:pred_EOS]

                # calculate confidence score (= multiply of pred_max_prob) confidence score 값을 계산
                confidence_score = pred_max_prob.cumprod(dim=0)[-1]

                lists.append(pred)
                print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}'
                      )  #구한 값을 출력
                log.write(
                    f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n'
                )  #구한 값을 txt에 저장

            log.close()  #파일 닫기

    with torch.no_grad():
        for image_tensors, image_path_list in demo_loader2:
            batch_size = image_tensors.size(0)
            image = image_tensors.to(device)
            # For max length prediction
            length_for_pred = torch.IntTensor([opt.batch_max_length] *
                                              batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length +
                                             1).fill_(0).to(device)

            #ATTn
            preds = model(image, text_for_pred, is_train=False)

            # select max probabilty (greedy decoding) then decode index to character
            _, preds_index = preds.max(2)
            preds_str = converter.decode(preds_index, length_for_pred)

            log = open(f'./log_demo_result.txt', 'a')  #이어서 쓸수 있게 열고
            dashed_line = '-' * 80
            head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score'

            print(f'{dashed_line}\n{head}\n{dashed_line}')  #테이블 양식 출력
            log.write(
                f'{dashed_line}\n{head}\n{dashed_line}\n')  #txt에 테이블 양식 저장

            preds_prob = F.softmax(preds, dim=2)
            preds_max_prob, _ = preds_prob.max(dim=2)
            for img_name, pred, pred_max_prob in zip(image_path_list,
                                                     preds_str,
                                                     preds_max_prob):
                pred_EOS = pred.find('[s]')
                pred = pred[:
                            pred_EOS]  # prune after "end of sentence" token ([s])
                pred_max_prob = pred_max_prob[:pred_EOS]

                # confidence score 값을 계산
                confidence_score = pred_max_prob.cumprod(dim=0)[-1]

                print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}'
                      )  #구한 값을 출력
                log.write(
                    f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n'
                )  #구한 값을 txt에 저장
                if pred in lists:
                    print(pred + "은(는) 알맞은 목적지입니다.")
                else:
                    print(pred + "은(는) 알맞은 목적지가 아닙니다.")

            log.close()  #파일 닫기
def train(opt):
    os.makedirs(opt.log, exist_ok=True)
    writer = SummaryWriter(opt.log)
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)

    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """

    ctc_converter = CTCLabelConverter(opt.character)
    attn_converter = AttnLabelConverter(opt.character)
    opt.num_class = len(attn_converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    """ setup loss """
    loss_avg = Averager()
    ctc_loss = torch.nn.CTCLoss(zero_infinity=True).to(device)
    attn_loss = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter
    pbar = tqdm(range(opt.num_iter))

    for iteration in pbar:

        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        ctc_text, ctc_length = ctc_converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        attn_text, attn_length = attn_converter.encode(
            labels, batch_max_length=opt.batch_max_length)

        batch_size = image.size(0)

        preds, refiner = model(image, attn_text[:, :-1])

        refiner_size = torch.IntTensor([refiner.size(1)] * batch_size)
        refiner = refiner.log_softmax(2).permute(1, 0, 2)
        refiner_loss = ctc_loss(refiner, ctc_text, refiner_size, ctc_length)

        total_loss = opt.lambda_ctc * refiner_loss
        target = attn_text[:, 1:]  # without [GO] Symbol
        for pred in preds:
            total_loss += opt.lambda_attn * attn_loss(
                pred.view(-1, pred.shape[-1]),
                target.contiguous().view(-1))

        model.zero_grad()
        total_loss.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        loss_avg.add(total_loss)
        if loss_avg.val() <= 0.6:
            opt.grad_clip = 2
        if loss_avg.val() <= 0.3:
            opt.grad_clip = 1

        preds = (p.cpu() for p in preds)
        refiner = refiner.cpu()
        image = image.cpu()
        torch.cuda.empty_cache()

        writer.add_scalar('train_loss', loss_avg.val(), iteration)
        pbar.set_description('Iteration {0}/{1}, AvgLoss {2}'.format(
            iteration, opt.num_iter, loss_avg.val()))

        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, attn_loss, valid_loader, attn_converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                writer.add_scalar('Val_loss', valid_loss)
                pbar.set_description(loss_log)
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy_{str(best_accuracy)}.pth'
                    )
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                # print(loss_model_log)

                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' or 'Transformer' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                log.write(predicted_result_log + '\n')

        # save model per 1e+3 iter.
        if (iteration + 1) % 1e+3 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.exp_name}/SCATTER_STR.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
def train(opt):
    lib.print_model_settings(locals().copy())

    if 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
        text_len = opt.batch_max_length+2
    else:
        converter = CTCLabelConverter(opt.character)
        text_len = opt.batch_max_length

    opt.classes = converter.character
    
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)

    train_dataset = LmdbStyleDataset(root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=opt.batch_size*2, #*2 to sample different images from training encoder and discriminator real images
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    
    print('-' * 80)
    
    valid_dataset = LmdbStyleDataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size*2, #*2 to sample different images from training encoder and discriminator real images
        shuffle=False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    text_dataset = text_gen(opt)
    text_loader = torch.utils.data.DataLoader(
        text_dataset, batch_size=opt.batch_size,
        shuffle=True,
        num_workers=int(opt.workers),
        pin_memory=True, drop_last=True)
    opt.num_class = len(converter.character)
    

    c_code_size = opt.latent
    cEncoder = GlobalContentEncoder(opt.num_class, text_len, opt.char_embed_size, c_code_size)
    ocrModel = ModelV1(opt)

    
    genModel = styleGANGen(opt.size, opt.latent, opt.latent, opt.n_mlp, channel_multiplier=opt.channel_multiplier)
    g_ema = styleGANGen(opt.size, opt.latent, opt.latent, opt.n_mlp, channel_multiplier=opt.channel_multiplier)
   
    disEncModel = styleGANDis(opt.size, channel_multiplier=opt.channel_multiplier, input_dim=opt.input_channel, code_s_dim=c_code_size)
    
    accumulate(g_ema, genModel, 0)
    
    # uCriterion = torch.nn.MSELoss()
    # sCriterion = torch.nn.MSELoss()
    # if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
    #     ocrCriterion = torch.nn.L1Loss()
    # else:
    if 'CTC' in opt.Prediction:
        ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        print('Not implemented error')
        sys.exit()
        # ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0

    cEncoder= torch.nn.DataParallel(cEncoder).to(device)
    cEncoder.train()
    genModel = torch.nn.DataParallel(genModel).to(device)
    g_ema = torch.nn.DataParallel(g_ema).to(device)
    genModel.train()
    g_ema.eval()

    disEncModel = torch.nn.DataParallel(disEncModel).to(device)
    disEncModel.train()

    ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    if opt.ocrFixed:
        if opt.Transformation == 'TPS':
            ocrModel.module.Transformation.eval()
        ocrModel.module.FeatureExtraction.eval()
        ocrModel.module.AdaptiveAvgPool.eval()
        # ocrModel.module.SequenceModeling.eval()
        ocrModel.module.Prediction.eval()
    else:
        ocrModel.train()

    g_reg_ratio = opt.g_reg_every / (opt.g_reg_every + 1)
    d_reg_ratio = opt.d_reg_every / (opt.d_reg_every + 1)

    
    optimizer = optim.Adam(
        list(genModel.parameters())+list(cEncoder.parameters()),
        lr=opt.lr * g_reg_ratio,
        betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
    )
    dis_optimizer = optim.Adam(
        disEncModel.parameters(),
        lr=opt.lr * d_reg_ratio,
        betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
    )
    
    ocr_optimizer = optim.Adam(
        ocrModel.parameters(),
        lr=opt.lr,
        betas=(0.9, 0.99),
    )


    ## Loading pre-trained files
    if opt.modelFolderFlag:
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]

    if opt.saved_ocr_model !='' and opt.saved_ocr_model !='None':
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        checkpoint = torch.load(opt.saved_ocr_model)
        ocrModel.load_state_dict(checkpoint)
    
    # if opt.saved_gen_model !='' and opt.saved_gen_model !='None':
    #     print(f'loading pretrained gen model from {opt.saved_gen_model}')
    #     checkpoint = torch.load(opt.saved_gen_model, map_location=lambda storage, loc: storage)
    #     genModel.module.load_state_dict(checkpoint['g'])
    #     g_ema.module.load_state_dict(checkpoint['g_ema'])

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)
        
        # styleModel.load_state_dict(checkpoint['styleModel'])
        # mixModel.load_state_dict(checkpoint['mixModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        g_ema.load_state_dict(checkpoint['g_ema'])
        disEncModel.load_state_dict(checkpoint['disEncModel'])
        ocrModel.load_state_dict(checkpoint['ocrModel'])
        
        optimizer.load_state_dict(checkpoint["optimizer"])
        dis_optimizer.load_state_dict(checkpoint["dis_optimizer"])
        ocr_optimizer.load_state_dict(checkpoint["ocr_optimizer"])

    # if opt.imgReconLoss == 'l1':
    #     recCriterion = torch.nn.L1Loss()
    # elif opt.imgReconLoss == 'ssim':
    #     recCriterion = ssim
    # elif opt.imgReconLoss == 'ms-ssim':
    #     recCriterion = msssim
    

    # loss averager
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_unsup = Averager()
    loss_avg_sup = Averager()
    log_r1_val = Averager()
    log_avg_path_loss_val = Averager()
    log_avg_mean_path_length_avg = Averager()
    log_ada_aug_p = Averager()
    loss_avg_ocr_sup = Averager()
    loss_avg_ocr_unsup = Averager()

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)
    ocr_scheduler = get_scheduler(ocr_optimizer,opt)

    start_time = time.time()
    iteration = start_iter
    cntr=0
    
    mean_path_length = 0
    d_loss_val = 0
    r1_loss = torch.tensor(0.0, device=device)
    g_loss_val = 0
    path_loss = torch.tensor(0.0, device=device)
    path_lengths = torch.tensor(0.0, device=device)
    mean_path_length_avg = 0
    # loss_dict = {}

    accum = 0.5 ** (32 / (10 * 1000))
    ada_augment = torch.tensor([0.0, 0.0], device=device)
    ada_aug_p = opt.augment_p if opt.augment_p > 0 else 0.0
    ada_aug_step = opt.ada_target / opt.ada_length
    r_t_stat = 0
    epsilon = 10e-50
    # sample_z = torch.randn(opt.n_sample, opt.latent, device=device)

    while(True):
        # print(cntr)
        # train part
        if opt.lr_policy !="None":
            scheduler.step()
            dis_scheduler.step()
            ocr_scheduler.step()
        
        image_input_tensors, _, labels, _ = iter(train_loader).next()
        labels_z_c = iter(text_loader).next()

        image_input_tensors = image_input_tensors.to(device)
        gt_image_tensors = image_input_tensors[:opt.batch_size].detach()
        real_image_tensors = image_input_tensors[opt.batch_size:].detach()
        
        labels_gt = labels[:opt.batch_size]
        
        requires_grad(cEncoder, False)
        requires_grad(genModel, False)
        requires_grad(disEncModel, True)
        requires_grad(ocrModel, False)

        text_z_c, length_z_c = converter.encode(labels_z_c, batch_max_length=opt.batch_max_length)
        text_gt, length_gt = converter.encode(labels_gt, batch_max_length=opt.batch_max_length)

        z_c_code = cEncoder(text_z_c)
        noise_style = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
        style=[]
        style.append(noise_style[0]*z_c_code)
        if len(noise_style)>1:
            style.append(noise_style[1]*z_c_code)
        
        if opt.zAlone:
            #to validate orig style gan results
            newstyle = []
            newstyle.append(style[0][:,:opt.latent])
            if len(style)>1:
                newstyle.append(style[1][:,:opt.latent])
            style = newstyle
        
        fake_img,_ = genModel(style, input_is_latent=opt.input_latent)
        
        # #unsupervised code prediction on generated image
        # u_pred_code = disEncModel(fake_img, mode='enc')
        # uCost = uCriterion(u_pred_code, z_code)

        # #supervised code prediction on gt image
        # s_pred_code = disEncModel(gt_image_tensors, mode='enc')
        # sCost = uCriterion(s_pred_code, gt_phoc_tensors)

        #Domain discriminator
        fake_pred = disEncModel(fake_img)
        real_pred = disEncModel(real_image_tensors)
        disCost = d_logistic_loss(real_pred, fake_pred)

        # dis_cost = disCost + opt.gamma_e*uCost + opt.beta*sCost
        loss_avg_dis.add(disCost)
        # loss_avg_sup.add(opt.beta*sCost)
        # loss_avg_unsup.add(opt.gamma_e * uCost)

        disEncModel.zero_grad()
        disCost.backward()
        dis_optimizer.step()

        d_regularize = cntr % opt.d_reg_every == 0

        if d_regularize:
            real_image_tensors.requires_grad = True
            real_pred = disEncModel(real_image_tensors)
            
            r1_loss = d_r1_loss(real_pred, real_image_tensors)

            disEncModel.zero_grad()
            (opt.r1 / 2 * r1_loss * opt.d_reg_every + 0 * real_pred[0]).backward()

            dis_optimizer.step()
        log_r1_val.add(r1_loss)
        
        # Recognizer update
        if not opt.ocrFixed and not opt.zAlone:
            requires_grad(disEncModel, False)
            requires_grad(ocrModel, True)

            if 'CTC' in opt.Prediction:
                preds_recon = ocrModel(gt_image_tensors, text_gt, is_train=True)
                preds_size = torch.IntTensor([preds_recon.size(1)] * opt.batch_size)
                preds_recon_softmax = preds_recon.log_softmax(2).permute(1, 0, 2)
                ocrCost = ocrCriterion(preds_recon_softmax, text_gt, preds_size, length_gt)
            else:
                print("Not implemented error")
                sys.exit()
            
            ocrModel.zero_grad()
            ocrCost.backward()
            # torch.nn.utils.clip_grad_norm_(ocrModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
            ocr_optimizer.step()
            loss_avg_ocr_sup.add(ocrCost)
        else:
            loss_avg_ocr_sup.add(torch.tensor(0.0))


        # [Word Generator] update
        # image_input_tensors, _, labels, _ = iter(train_loader).next()
        labels_z_c = iter(text_loader).next()

        # image_input_tensors = image_input_tensors.to(device)
        # gt_image_tensors = image_input_tensors[:opt.batch_size]
        # real_image_tensors = image_input_tensors[opt.batch_size:]
        
        # labels_gt = labels[:opt.batch_size]

        requires_grad(cEncoder, True)
        requires_grad(genModel, True)
        requires_grad(disEncModel, False)
        requires_grad(ocrModel, False)

        text_z_c, length_z_c = converter.encode(labels_z_c, batch_max_length=opt.batch_max_length)
        
        z_c_code = cEncoder(text_z_c)
        noise_style = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
        style=[]
        style.append(noise_style[0]*z_c_code)
        if len(noise_style)>1:
            style.append(noise_style[1]*z_c_code)

        if opt.zAlone:
            #to validate orig style gan results
            newstyle = []
            newstyle.append(style[0][:,:opt.latent])
            if len(style)>1:
                newstyle.append(style[1][:,:opt.latent])
            style = newstyle
        
        fake_img,_ = genModel(style, input_is_latent=opt.input_latent)

        fake_pred = disEncModel(fake_img)
        disGenCost = g_nonsaturating_loss(fake_pred)

        if opt.zAlone:
            ocrCost = torch.tensor(0.0)
        else:
            #Compute OCR prediction (Reconstruction of content)
            # text_for_pred = torch.LongTensor(opt.batch_size, opt.batch_max_length + 1).fill_(0).to(device)
            # length_for_pred = torch.IntTensor([opt.batch_max_length] * opt.batch_size).to(device)
            
            if 'CTC' in opt.Prediction:
                preds_recon = ocrModel(fake_img, text_z_c, is_train=False)
                preds_size = torch.IntTensor([preds_recon.size(1)] * opt.batch_size)
                preds_recon_softmax = preds_recon.log_softmax(2).permute(1, 0, 2)
                ocrCost = ocrCriterion(preds_recon_softmax, text_z_c, preds_size, length_z_c)
            else:
                print("Not implemented error")
                sys.exit()
        
        genModel.zero_grad()
        cEncoder.zero_grad()

        gen_enc_cost = disGenCost + opt.ocrWeight * ocrCost
        grad_fake_OCR = torch.autograd.grad(ocrCost, fake_img, retain_graph=True)[0]
        loss_grad_fake_OCR = 10**6*torch.mean(grad_fake_OCR**2)
        grad_fake_adv = torch.autograd.grad(disGenCost, fake_img, retain_graph=True)[0]
        loss_grad_fake_adv = 10**6*torch.mean(grad_fake_adv**2)
        
        if opt.grad_balance:
            gen_enc_cost.backward(retain_graph=True)
            grad_fake_OCR = torch.autograd.grad(ocrCost, fake_img, create_graph=True, retain_graph=True)[0]
            grad_fake_adv = torch.autograd.grad(disGenCost, fake_img, create_graph=True, retain_graph=True)[0]
            a = opt.ocrWeight * torch.div(torch.std(grad_fake_adv), epsilon+torch.std(grad_fake_OCR))
            if a is None:
                print(ocrCost, disGenCost, torch.std(grad_fake_adv), torch.std(grad_fake_OCR))
            if a>1000 or a<0.0001:
                print(a)
            
            ocrCost = a.detach() * ocrCost
            gen_enc_cost = disGenCost + ocrCost
            gen_enc_cost.backward(retain_graph=True)
            grad_fake_OCR = torch.autograd.grad(ocrCost, fake_img, create_graph=False, retain_graph=True)[0]
            grad_fake_adv = torch.autograd.grad(disGenCost, fake_img, create_graph=False, retain_graph=True)[0]
            loss_grad_fake_OCR = 10 ** 6 * torch.mean(grad_fake_OCR ** 2)
            loss_grad_fake_adv = 10 ** 6 * torch.mean(grad_fake_adv ** 2)
            with torch.no_grad():
                gen_enc_cost.backward()
        else:
            gen_enc_cost.backward()

        loss_avg_gen.add(disGenCost)
        loss_avg_ocr_unsup.add(opt.ocrWeight * ocrCost)

        optimizer.step()
        
        g_regularize = cntr % opt.g_reg_every == 0

        if g_regularize:
            path_batch_size = max(1, opt.batch_size // opt.path_batch_shrink)
            # image_input_tensors, _, labels, _ = iter(train_loader).next()
            labels_z_c = iter(text_loader).next()

            # image_input_tensors = image_input_tensors.to(device)
            # gt_image_tensors = image_input_tensors[:path_batch_size]

            # labels_gt = labels[:path_batch_size]

            text_z_c, length_z_c = converter.encode(labels_z_c[:path_batch_size], batch_max_length=opt.batch_max_length)
            # text_gt, length_gt = converter.encode(labels_gt, batch_max_length=opt.batch_max_length)
        
            z_c_code = cEncoder(text_z_c)
            noise_style = mixing_noise_style(path_batch_size, opt.latent, opt.mixing, device)
            style=[]
            style.append(noise_style[0]*z_c_code)
            if len(noise_style)>1:
                style.append(noise_style[1]*z_c_code)

            if opt.zAlone:
                #to validate orig style gan results
                newstyle = []
                newstyle.append(style[0][:,:opt.latent])
                if len(style)>1:
                    newstyle.append(style[1][:,:opt.latent])
                style = newstyle

            fake_img, grad = genModel(style, return_latents=True, g_path_regularize=True, mean_path_length=mean_path_length)
            
            decay = 0.01
            path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))

            mean_path_length_orig = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
            path_loss = (path_lengths - mean_path_length_orig).pow(2).mean()
            mean_path_length = mean_path_length_orig.detach().item()

            genModel.zero_grad()
            cEncoder.zero_grad()
            weighted_path_loss = opt.path_regularize * opt.g_reg_every * path_loss

            if opt.path_batch_shrink:
                weighted_path_loss += 0 * fake_img[0, 0, 0, 0]

            weighted_path_loss.backward()

            optimizer.step()

            # mean_path_length_avg = (
            #     reduce_sum(mean_path_length).item() / get_world_size()
            # )
            #commented above for multi-gpu , non-distributed setting
            mean_path_length_avg = mean_path_length

        accumulate(g_ema, genModel, accum)

        log_avg_path_loss_val.add(path_loss)
        log_avg_mean_path_length_avg.add(torch.tensor(mean_path_length_avg))
        log_ada_aug_p.add(torch.tensor(ada_aug_p))
        

        if get_rank() == 0:
            if wandb and opt.wandb:
                wandb.log(
                    {
                        "Generator": g_loss_val,
                        "Discriminator": d_loss_val,
                        "Augment": ada_aug_p,
                        "Rt": r_t_stat,
                        "R1": r1_val,
                        "Path Length Regularization": path_loss_val,
                        "Mean Path Length": mean_path_length,
                        "Real Score": real_score_val,
                        "Fake Score": fake_score_val,   
                        "Path Length": path_length_val,
                    }
                )
        
        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #generate paired content with similar style
            labels_z_c_1 = iter(text_loader).next()
            labels_z_c_2 = iter(text_loader).next()
            
            text_z_c_1, length_z_c_1 = converter.encode(labels_z_c_1, batch_max_length=opt.batch_max_length)
            text_z_c_2, length_z_c_2 = converter.encode(labels_z_c_2, batch_max_length=opt.batch_max_length)

            z_c_code_1 = cEncoder(text_z_c_1)
            z_c_code_2 = cEncoder(text_z_c_2)

            
            style_c1_s1 = []
            style_c2_s1 = []
            style_s1 = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
            style_c1_s1.append(style_s1[0]*z_c_code_1)
            style_c2_s1.append(style_s1[0]*z_c_code_2)
            if len(style_s1)>1:
                style_c1_s1.append(style_s1[1]*z_c_code_1)
                style_c2_s1.append(style_s1[1]*z_c_code_2)
            
            noise_style = mixing_noise_style(opt.batch_size, opt.latent, opt.mixing, device)
            style_c1_s2 = []
            style_c1_s2.append(noise_style[0]*z_c_code_1)
            if len(noise_style)>1:
                style_c1_s2.append(noise_style[1]*z_c_code_1)
            
            if opt.zAlone:
                #to validate orig style gan results
                newstyle = []
                newstyle.append(style_c1_s1[0][:,:opt.latent])
                if len(style_c1_s1)>1:
                    newstyle.append(style_c1_s1[1][:,:opt.latent])
                style_c1_s1 = newstyle
                style_c2_s1 = newstyle
                style_c1_s2 = newstyle
            
            fake_img_c1_s1, _ = g_ema(style_c1_s1, input_is_latent=opt.input_latent)
            fake_img_c2_s1, _ = g_ema(style_c2_s1, input_is_latent=opt.input_latent)
            fake_img_c1_s2, _ = g_ema(style_c1_s2, input_is_latent=opt.input_latent)

            if not opt.zAlone:
                #Run OCR prediction
                if 'CTC' in opt.Prediction:
                    preds = ocrModel(fake_img_c1_s1, text_z_c_1, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * opt.batch_size)
                    _, preds_index = preds.max(2)
                    preds_str_fake_img_c1_s1 = converter.decode(preds_index.data, preds_size.data)

                    preds = ocrModel(fake_img_c2_s1, text_z_c_2, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * opt.batch_size)
                    _, preds_index = preds.max(2)
                    preds_str_fake_img_c2_s1 = converter.decode(preds_index.data, preds_size.data)

                    preds = ocrModel(fake_img_c1_s2, text_z_c_1, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * opt.batch_size)
                    _, preds_index = preds.max(2)
                    preds_str_fake_img_c1_s2 = converter.decode(preds_index.data, preds_size.data)

                    preds = ocrModel(gt_image_tensors, text_gt, is_train=False)
                    preds_size = torch.IntTensor([preds.size(1)] * gt_image_tensors.shape[0])
                    _, preds_index = preds.max(2)
                    preds_str_gt = converter.decode(preds_index.data, preds_size.data)

                else:
                    print("Not implemented error")
                    sys.exit()
            else:
                preds_str_fake_img_c1_s1 = [':None:'] * fake_img_c1_s1.shape[0]
                preds_str_gt = [':None:'] * fake_img_c1_s1.shape[0] 

            os.makedirs(os.path.join(opt.trainDir,str(iteration)), exist_ok=True)
            for trImgCntr in range(opt.batch_size):
                try:
                    save_image(tensor2im(fake_img_c1_s1[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_c1_s1_'+labels_z_c_1[trImgCntr]+'_ocr:'+preds_str_fake_img_c1_s1[trImgCntr]+'.png'))
                    if not opt.zAlone:
                        save_image(tensor2im(fake_img_c2_s1[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_c2_s1_'+labels_z_c_2[trImgCntr]+'_ocr:'+preds_str_fake_img_c2_s1[trImgCntr]+'.png'))
                        save_image(tensor2im(fake_img_c1_s2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_c1_s2_'+labels_z_c_1[trImgCntr]+'_ocr:'+preds_str_fake_img_c1_s2[trImgCntr]+'.png'))
                        if trImgCntr<gt_image_tensors.shape[0]:
                            save_image(tensor2im(gt_image_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_gt_act:'+labels_gt[trImgCntr]+'_ocr:'+preds_str_gt[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}]  \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train UnSup OCR loss: {loss_avg_ocr_unsup.val():0.5f}, Train Sup OCR loss: {loss_avg_ocr_sup.val():0.5f}, \
                    Train R1-val loss: {log_r1_val.val():0.5f}, Train avg-path-loss: {log_avg_path_loss_val.val():0.5f}, \
                    Train mean-path-length loss: {log_avg_mean_path_length_avg.val():0.5f}, Train ada-aug-p: {log_ada_aug_p.val():0.5f}, \
                    Elapsed_time: {elapsed_time:0.5f}'
                
                
                #plotting
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-UnSup-OCR-Loss'), loss_avg_ocr_unsup.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Sup-OCR-Loss'), loss_avg_ocr_sup.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-r1_val'), log_r1_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-path_loss_val'), log_avg_path_loss_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-mean_path_length_avg'), log_avg_mean_path_length_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-ada_aug_p'), log_ada_aug_p.val().item())

                
                print(loss_log)

                loss_avg_dis.reset()
                loss_avg_gen.reset()
                loss_avg_ocr_unsup.reset()
                loss_avg_ocr_sup.reset()
                log_r1_val.reset()
                log_avg_path_loss_val.reset()
                log_avg_mean_path_length_avg.reset()
                log_ada_aug_p.reset()
                

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save({
                'cEncoder':cEncoder.state_dict(),
                'genModel':genModel.state_dict(),
                'g_ema':g_ema.state_dict(),
                'ocrModel':ocrModel.state_dict(),
                'disEncModel':disEncModel.state_dict(),
                'optimizer':optimizer.state_dict(),
                'ocr_optimizer':ocr_optimizer.state_dict(),
                'dis_optimizer':dis_optimizer.state_dict()}, 
                os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
        cntr+=1
def train(opt, tb):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    print("~~~~~~~~~~~~Gradient Descent~~~~~~~~~~~~~")
    #print(model.parameters())
    #print(model.)
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Filtered parameters for gradient descent: \n', len(filtered_parameters))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("Optimizer:")
    print(optimizer)

    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter

    while(True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds = preds.permute(1, 0, 2)

            # (ctc_a) For PyTorch 1.2.0 and 1.3.0. To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16
            torch.backends.cudnn.enabled = False
            cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device))
            torch.backends.cudnn.enabled = True

            # # (ctc_b) To reproduce our pretrained model / paper, use our previous code (below code) instead of (ctc_a).
            # # With PyTorch 1.2.0, the below code occurs NAN, so you may use PyTorch 1.1.0.
            # # Thus, the result of CTCLoss is different in PyTorch 1.1.0 and PyTorch 1.2.0.
            # # See https://github.com/clovaai/deep-text-recognition-benchmark/issues/56#issuecomment-526490707
            # cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            print(preds[0][0])
            target = text[:, 1:]  # without [GO] Symbol
            print(target[0])
            cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                tb.add_scalar('Training Loss vs Iteration', loss_avg.val(), i)              # Record to Tensorboard
                tb.add_scalar('Validation Loss vs Iteration', valid_loss, i)                # Record to Tensorboard
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'
                tb.add_scalar('Current Accuracy vs Iteration', current_accuracy, i)         # Record to Tensorboard
                tb.add_scalar('Current Norm ED vs Iteration', current_norm_ED, i)           # Record to Tensorboard            

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
Exemple #30
0
def train(opt):
    lib.print_model_settings(locals().copy())

    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)

    train_dataset, train_dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=opt.batch_size,
        sampler=data_sampler(train_dataset, shuffle=True, distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    log.write(train_dataset_log)
    print('-' * 80)

    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        sampler=data_sampler(train_dataset, shuffle=False, distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    if 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
    else:
        converter = CTCLabelConverter(opt.character)
    
    opt.num_class = len(converter.character)

    
    # styleModel = StyleTensorEncoder(input_dim=opt.input_channel)
    # genModel = AdaIN_Tensor_WordGenerator(opt)
    # disModel = MsImageDisV2(opt)

    # styleModel = StyleLatentEncoder(input_dim=opt.input_channel, norm='none')
    # mixModel = Mixer(opt,nblk=3, dim=opt.latent)
    genModel = styleGANGen(opt.size, opt.latent, opt.n_mlp, opt.num_class, channel_multiplier=opt.channel_multiplier).to(device)
    disModel = styleGANDis(opt.size, channel_multiplier=opt.channel_multiplier, input_dim=opt.input_channel).to(device)
    g_ema = styleGANGen(opt.size, opt.latent, opt.n_mlp, opt.num_class, channel_multiplier=opt.channel_multiplier).to(device)
    ocrModel = ModelV1(opt).to(device)
    accumulate(g_ema, genModel, 0)

    # #  weight initialization
    # for currModel in [styleModel, mixModel]:
    #     for name, param in currModel.named_parameters():
    #         if 'localization_fc2' in name:
    #             print(f'Skip {name} as it is already initialized')
    #             continue
    #         try:
    #             if 'bias' in name:
    #                 init.constant_(param, 0.0)
    #             elif 'weight' in name:
    #                 init.kaiming_normal_(param)
    #         except Exception as e:  # for batchnorm.
    #             if 'weight' in name:
    #                 param.data.fill_(1)
    #             continue

    if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
        ocrCriterion = torch.nn.L1Loss()
    else:
        if 'CTC' in opt.Prediction:
            ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
        else:
            ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0

    # vggRecCriterion = torch.nn.L1Loss()
    # vggModel = VGGPerceptualLossModel(models.vgg19(pretrained=True), vggRecCriterion)
    
    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length)

    if opt.distributed:
        genModel = torch.nn.parallel.DistributedDataParallel(
            genModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False,
        )
        
        disModel = torch.nn.parallel.DistributedDataParallel(
            disModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False,
        )
        ocrModel = torch.nn.parallel.DistributedDataParallel(
            ocrModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False
        )
    
    # styleModel = torch.nn.DataParallel(styleModel).to(device)
    # styleModel.train()
    
    # mixModel = torch.nn.DataParallel(mixModel).to(device)
    # mixModel.train()
    
    # genModel = torch.nn.DataParallel(genModel).to(device)
    # g_ema = torch.nn.DataParallel(g_ema).to(device)
    genModel.train()
    g_ema.eval()

    # disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    # vggModel = torch.nn.DataParallel(vggModel).to(device)
    # vggModel.eval()

    # ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    # if opt.distributed:
    #     ocrModel.module.Transformation.eval()
    #     ocrModel.module.FeatureExtraction.eval()
    #     ocrModel.module.AdaptiveAvgPool.eval()
    #     # ocrModel.module.SequenceModeling.eval()
    #     ocrModel.module.Prediction.eval()
    # else:
    #     ocrModel.Transformation.eval()
    #     ocrModel.FeatureExtraction.eval()
    #     ocrModel.AdaptiveAvgPool.eval()
    #     # ocrModel.SequenceModeling.eval()
    #     ocrModel.Prediction.eval()
    ocrModel.eval()

    if opt.distributed:
        g_module = genModel.module
        d_module = disModel.module
    else:
        g_module = genModel
        d_module = disModel

    g_reg_ratio = opt.g_reg_every / (opt.g_reg_every + 1)
    d_reg_ratio = opt.d_reg_every / (opt.d_reg_every + 1)

    optimizer = optim.Adam(
        genModel.parameters(),
        lr=opt.lr * g_reg_ratio,
        betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
    )
    dis_optimizer = optim.Adam(
        disModel.parameters(),
        lr=opt.lr * d_reg_ratio,
        betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
    )

    ## Loading pre-trained files
    if opt.modelFolderFlag:
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]

    if opt.saved_ocr_model !='' and opt.saved_ocr_model !='None':
        if not opt.distributed:
            ocrModel = torch.nn.DataParallel(ocrModel)
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        checkpoint = torch.load(opt.saved_ocr_model)
        ocrModel.load_state_dict(checkpoint)
        #temporary fix
        if not opt.distributed:
            ocrModel = ocrModel.module
    
    if opt.saved_gen_model !='' and opt.saved_gen_model !='None':
        print(f'loading pretrained gen model from {opt.saved_gen_model}')
        checkpoint = torch.load(opt.saved_gen_model, map_location=lambda storage, loc: storage)
        genModel.module.load_state_dict(checkpoint['g'])
        g_ema.module.load_state_dict(checkpoint['g_ema'])

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)
        
        # styleModel.load_state_dict(checkpoint['styleModel'])
        # mixModel.load_state_dict(checkpoint['mixModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        g_ema.load_state_dict(checkpoint['g_ema'])
        disModel.load_state_dict(checkpoint['disModel'])
        
        optimizer.load_state_dict(checkpoint["optimizer"])
        dis_optimizer.load_state_dict(checkpoint["dis_optimizer"])

    # if opt.imgReconLoss == 'l1':
    #     recCriterion = torch.nn.L1Loss()
    # elif opt.imgReconLoss == 'ssim':
    #     recCriterion = ssim
    # elif opt.imgReconLoss == 'ms-ssim':
    #     recCriterion = msssim
    

    # loss averager
    loss_avg = Averager()
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_vgg_per = Averager()
    loss_avg_vgg_sty = Averager()
    loss_avg_ocr = Averager()

    log_r1_val = Averager()
    log_avg_path_loss_val = Averager()
    log_avg_mean_path_length_avg = Averager()
    log_ada_aug_p = Averager()

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)

    start_time = time.time()
    iteration = start_iter
    cntr=0
    
    mean_path_length = 0
    d_loss_val = 0
    r1_loss = torch.tensor(0.0, device=device)
    g_loss_val = 0
    path_loss = torch.tensor(0.0, device=device)
    path_lengths = torch.tensor(0.0, device=device)
    mean_path_length_avg = 0
    loss_dict = {}

    accum = 0.5 ** (32 / (10 * 1000))
    ada_augment = torch.tensor([0.0, 0.0], device=device)
    ada_aug_p = opt.augment_p if opt.augment_p > 0 else 0.0
    ada_aug_step = opt.ada_target / opt.ada_length
    r_t_stat = 0

    sample_z = torch.randn(opt.n_sample, opt.latent, device=device)

    while(True):
        # print(cntr)
        # train part
       
        if opt.lr_policy !="None":
            scheduler.step()
            dis_scheduler.step()
        
        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()

        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)

        requires_grad(genModel, False)
        # requires_grad(styleModel, False)
        # requires_grad(mixModel, False)
        requires_grad(disModel, True)

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        
        
        #forward pass from style and word generator
        # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
        style = mixing_noise(opt.batch_size, opt.latent, opt.mixing, device)
        # scInput = mixModel(style,text_2)
        if 'CTC' in opt.Prediction:
            images_recon_2,_ = genModel(style, text_2, input_is_latent=opt.input_latent)
        else:
            images_recon_2,_ = genModel(style, text_2[:,1:-1], input_is_latent=opt.input_latent)
        
        #Domain discriminator: Dis update
        if opt.augment:
            image_gt_tensors_aug, _ = augment(image_gt_tensors, ada_aug_p)
            images_recon_2, _ = augment(images_recon_2, ada_aug_p)

        else:
            image_gt_tensors_aug = image_gt_tensors

        fake_pred = disModel(images_recon_2)
        real_pred = disModel(image_gt_tensors_aug)
        disCost = d_logistic_loss(real_pred, fake_pred)

        loss_dict["d"] = disCost*opt.disWeight
        loss_dict["real_score"] = real_pred.mean()
        loss_dict["fake_score"] = fake_pred.mean()

        loss_avg_dis.add(disCost)

        disModel.zero_grad()
        disCost.backward()
        dis_optimizer.step()

        if opt.augment and opt.augment_p == 0:
            ada_augment += torch.tensor(
                (torch.sign(real_pred).sum().item(), real_pred.shape[0]), device=device
            )
            ada_augment = reduce_sum(ada_augment)

            if ada_augment[1] > 255:
                pred_signs, n_pred = ada_augment.tolist()

                r_t_stat = pred_signs / n_pred

                if r_t_stat > opt.ada_target:
                    sign = 1

                else:
                    sign = -1

                ada_aug_p += sign * ada_aug_step * n_pred
                ada_aug_p = min(1, max(0, ada_aug_p))
                ada_augment.mul_(0)

        d_regularize = cntr % opt.d_reg_every == 0

        if d_regularize:
            image_gt_tensors.requires_grad = True
            image_input_tensors.requires_grad = True
            cat_tensor = image_gt_tensors
            real_pred = disModel(cat_tensor)
            
            r1_loss = d_r1_loss(real_pred, cat_tensor)

            disModel.zero_grad()
            (opt.r1 / 2 * r1_loss * opt.d_reg_every + 0 * real_pred[0]).backward()

            dis_optimizer.step()

        loss_dict["r1"] = r1_loss

        
        # #[Style Encoder] + [Word Generator] update
        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()
        
        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)

        requires_grad(genModel, True)
        # requires_grad(styleModel, True)
        # requires_grad(mixModel, True)
        requires_grad(disModel, False)

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)

        # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
        # scInput = mixModel(style,text_2)

        # images_recon_2,_ = genModel([scInput], input_is_latent=opt.input_latent)
        style = mixing_noise(batch_size, opt.latent, opt.mixing, device)
        
        if 'CTC' in opt.Prediction:
            images_recon_2, _ = genModel(style, text_2)
        else:
            images_recon_2, _ = genModel(style, text_2[:,1:-1])

        if opt.augment:
            images_recon_2, _ = augment(images_recon_2, ada_aug_p)

        fake_pred = disModel(images_recon_2)
        disGenCost = g_nonsaturating_loss(fake_pred)

        loss_dict["g"] = disGenCost

        # # #Adversarial loss
        # # disGenCost = disModel.module.calc_gen_loss(torch.cat((images_recon_2,image_input_tensors),dim=1))

        # #Input reconstruction loss
        # recCost = recCriterion(images_recon_2,image_gt_tensors)

        # #vgg loss
        # vggPerCost, vggStyleCost = vggModel(image_gt_tensors, images_recon_2)
        #ocr loss
        text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
        length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
        if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
            preds_recon = ocrModel(images_recon_2, text_for_pred, is_train=False, returnFeat=opt.contentLoss)
            preds_gt = ocrModel(image_gt_tensors, text_for_pred, is_train=False, returnFeat=opt.contentLoss)
            ocrCost = ocrCriterion(preds_recon, preds_gt)
        else:
            if 'CTC' in opt.Prediction:
                
                preds_recon = ocrModel(images_recon_2, text_for_pred, is_train=False)
                # preds_o = preds_recon[:, :text_1.shape[1], :]
                preds_size = torch.IntTensor([preds_recon.size(1)] * batch_size)
                preds_recon_softmax = preds_recon.log_softmax(2).permute(1, 0, 2)
                ocrCost = ocrCriterion(preds_recon_softmax, text_2, preds_size, length_2)
                
                #predict ocr recognition on generated images
                # preds_recon_size = torch.IntTensor([preds_recon.size(1)] * batch_size)
                _, preds_recon_index = preds_recon.max(2)
                labels_o_ocr = converter.decode(preds_recon_index.data, preds_size.data)

                #predict ocr recognition on gt style images
                preds_s = ocrModel(image_input_tensors, text_for_pred, is_train=False)
                # preds_s = preds_s[:, :text_1.shape[1] - 1, :]
                preds_s_size = torch.IntTensor([preds_s.size(1)] * batch_size)
                _, preds_s_index = preds_s.max(2)
                labels_s_ocr = converter.decode(preds_s_index.data, preds_s_size.data)

                #predict ocr recognition on gt stylecontent images
                preds_sc = ocrModel(image_gt_tensors, text_for_pred, is_train=False)
                # preds_sc = preds_sc[:, :text_2.shape[1] - 1, :]
                preds_sc_size = torch.IntTensor([preds_sc.size(1)] * batch_size)
                _, preds_sc_index = preds_sc.max(2)
                labels_sc_ocr = converter.decode(preds_sc_index.data, preds_sc_size.data)

            else:
                preds_recon = ocrModel(images_recon_2, text_for_pred[:, :-1], is_train=False)  # align with Attention.forward
                target_2 = text_2[:, 1:]  # without [GO] Symbol
                ocrCost = ocrCriterion(preds_recon.view(-1, preds_recon.shape[-1]), target_2.contiguous().view(-1))

                #predict ocr recognition on generated images
                _, preds_o_index = preds_recon.max(2)
                labels_o_ocr = converter.decode(preds_o_index, length_for_pred)
                for idx, pred in enumerate(labels_o_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_o_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])

                #predict ocr recognition on gt style images
                preds_s = ocrModel(image_input_tensors, text_for_pred, is_train=False)
                _, preds_s_index = preds_s.max(2)
                labels_s_ocr = converter.decode(preds_s_index, length_for_pred)
                for idx, pred in enumerate(labels_s_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_s_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
                
                #predict ocr recognition on gt stylecontent images
                preds_sc = ocrModel(image_gt_tensors, text_for_pred, is_train=False)
                _, preds_sc_index = preds_sc.max(2)
                labels_sc_ocr = converter.decode(preds_sc_index, length_for_pred)
                for idx, pred in enumerate(labels_sc_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_sc_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])

        # cost =  opt.reconWeight*recCost + opt.disWeight*disGenCost + opt.vggPerWeight*vggPerCost + opt.vggStyWeight*vggStyleCost + opt.ocrWeight*ocrCost
        cost =  opt.disWeight*disGenCost + opt.ocrWeight*ocrCost

        # styleModel.zero_grad()
        genModel.zero_grad()
        # mixModel.zero_grad()
        disModel.zero_grad()
        # vggModel.zero_grad()
        ocrModel.zero_grad()
        
        cost.backward()
        optimizer.step()
        loss_avg.add(cost)

        g_regularize = cntr % opt.g_reg_every == 0

        if g_regularize:
            image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()
        
            image_input_tensors = image_input_tensors.to(device)
            image_gt_tensors = image_gt_tensors.to(device)
            batch_size = image_input_tensors.size(0)

            text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
            text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)

            path_batch_size = max(1, batch_size // opt.path_batch_shrink)

            # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
            # scInput = mixModel(style,text_2)

            # images_recon_2, latents = genModel([scInput],input_is_latent=opt.input_latent, return_latents=True)

            style = mixing_noise(path_batch_size, opt.latent, opt.mixing, device)
            
            
            if 'CTC' in opt.Prediction:
                images_recon_2, latents = genModel(style, text_2[:path_batch_size], return_latents=True)
            else:
                images_recon_2, latents = genModel(style, text_2[:path_batch_size,1:-1], return_latents=True)
            
            
            path_loss, mean_path_length, path_lengths = g_path_regularize(
                images_recon_2, latents, mean_path_length
            )

            genModel.zero_grad()
            weighted_path_loss = opt.path_regularize * opt.g_reg_every * path_loss

            if opt.path_batch_shrink:
                weighted_path_loss += 0 * images_recon_2[0, 0, 0, 0]

            weighted_path_loss.backward()

            optimizer.step()

            mean_path_length_avg = (
                reduce_sum(mean_path_length).item() / get_world_size()
            )

        loss_dict["path"] = path_loss
        loss_dict["path_length"] = path_lengths.mean()

        accumulate(g_ema, g_module, accum)

        loss_reduced = reduce_loss_dict(loss_dict)

        d_loss_val = loss_reduced["d"].mean().item()
        g_loss_val = loss_reduced["g"].mean().item()
        r1_val = loss_reduced["r1"].mean().item()
        path_loss_val = loss_reduced["path"].mean().item()
        real_score_val = loss_reduced["real_score"].mean().item()
        fake_score_val = loss_reduced["fake_score"].mean().item()
        path_length_val = loss_reduced["path_length"].mean().item()


        #Individual losses
        loss_avg_gen.add(opt.disWeight*disGenCost)
        loss_avg_imgRecon.add(torch.tensor(0.0))
        loss_avg_vgg_per.add(torch.tensor(0.0))
        loss_avg_vgg_sty.add(torch.tensor(0.0))
        loss_avg_ocr.add(opt.ocrWeight*ocrCost)

        log_r1_val.add(loss_reduced["path"])
        log_avg_path_loss_val.add(loss_reduced["path"])
        log_avg_mean_path_length_avg.add(torch.tensor(mean_path_length_avg))
        log_ada_aug_p.add(torch.tensor(ada_aug_p))
        
        if get_rank() == 0:
            # pbar.set_description(
            #     (
            #         f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
            #         f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
            #         f"augment: {ada_aug_p:.4f}"
            #     )
            # )

            if wandb and opt.wandb:
                wandb.log(
                    {
                        "Generator": g_loss_val,
                        "Discriminator": d_loss_val,
                        "Augment": ada_aug_p,
                        "Rt": r_t_stat,
                        "R1": r1_val,
                        "Path Length Regularization": path_loss_val,
                        "Mean Path Length": mean_path_length,
                        "Real Score": real_score_val,
                        "Fake Score": fake_score_val,   
                        "Path Length": path_length_val,
                    }
                )
            # if cntr % 100 == 0:
            #     with torch.no_grad():
            #         g_ema.eval()
            #         sample, _ = g_ema([scInput[:,:opt.latent],scInput[:,opt.latent:]])
            #         utils.save_image(
            #             sample,
            #             os.path.join(opt.trainDir, f"sample_{str(cntr).zfill(6)}.png"),
            #             nrow=int(opt.n_sample ** 0.5),
            #             normalize=True,
            #             range=(-1, 1),
            #         )


        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            curr_batch_size = style[0].shape[0]
            images_recon_2, _ = g_ema(style, text_2[:curr_batch_size], input_is_latent=opt.input_latent)
            
            os.makedirs(os.path.join(opt.trainDir,str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
                        save_image(tensor2im(image_input_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_sInput_'+labels_1[trImgCntr]+'.png'))
                        save_image(tensor2im(image_gt_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csGT_'+labels_2[trImgCntr]+'.png'))
                        save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csRecon_'+labels_2[trImgCntr]+'.png'))
                    else:
                        save_image(tensor2im(image_input_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_sInput_'+labels_1[trImgCntr]+'_'+labels_s_ocr[trImgCntr]+'.png'))
                        save_image(tensor2im(image_gt_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csGT_'+labels_2[trImgCntr]+'_'+labels_sc_ocr[trImgCntr]+'.png'))
                        save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csRecon_'+labels_2[trImgCntr]+'_'+labels_o_ocr[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                # styleModel.eval()
                genModel.eval()
                g_ema.eval()
                # mixModel.eval()
                disModel.eval()
                
                with torch.no_grad():                    
                    valid_loss, infer_time, length_of_data = validation_synth_v6(
                        iteration, g_ema, ocrModel, disModel, ocrCriterion, valid_loader, converter, opt)
                
                # styleModel.train()
                genModel.train()
                # mixModel.train()
                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train Synth loss: {loss_avg.val():0.5f}, \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train OCR loss: {loss_avg_ocr.val():0.5f}, \
                    Train R1-val loss: {log_r1_val.val():0.5f}, Train avg-path-loss: {log_avg_path_loss_val.val():0.5f}, \
                    Train mean-path-length loss: {log_avg_mean_path_length_avg.val():0.5f}, Train ada-aug-p: {log_ada_aug_p.val():0.5f}, \
                    Valid Synth loss: {valid_loss[0]:0.5f}, \
                    Valid Dis loss: {valid_loss[1]:0.5f}, Valid Gen loss: {valid_loss[2]:0.5f}, \
                    Valid OCR loss: {valid_loss[6]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                
                
                #plotting
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Synth-Loss'), loss_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-ImgRecon1-Loss'), loss_avg_imgRecon.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-VGG-Per-Loss'), loss_avg_vgg_per.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-VGG-Sty-Loss'), loss_avg_vgg_sty.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-OCR-Loss'), loss_avg_ocr.val().item())

                lib.plot.plot(os.path.join(opt.plotDir,'Train-r1_val'), log_r1_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-path_loss_val'), log_avg_path_loss_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-mean_path_length_avg'), log_avg_mean_path_length_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-ada_aug_p'), log_ada_aug_p.val().item())

                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Synth-Loss'), valid_loss[0].item())
                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Dis-Loss'), valid_loss[1].item())

                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Gen-Loss'), valid_loss[2].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-ImgRecon1-Loss'), valid_loss[3].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-VGG-Per-Loss'), valid_loss[4].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-VGG-Sty-Loss'), valid_loss[5].item())
                lib.plot.plot(os.path.join(opt.plotDir,'Valid-OCR-Loss'), valid_loss[6].item())
                
                print(loss_log)

                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_vgg_per.reset()
                loss_avg_vgg_sty.reset()
                loss_avg_ocr.reset()

                log_r1_val.reset()
                log_avg_path_loss_val.reset()
                log_avg_mean_path_length_avg.reset()
                log_ada_aug_p.reset()
                

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save({
                # 'styleModel':styleModel.state_dict(),
                # 'mixModel':mixModel.state_dict(),
                'genModel':g_module.state_dict(),
                'g_ema':g_ema.state_dict(),
                'disModel':d_module.state_dict(),
                'optimizer':optimizer.state_dict(),
                'dis_optimizer':dis_optimizer.state_dict()}, 
                os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
        cntr+=1