def train(args):
    data_loader = DataLoader(args.batch_size, args.seq_length, args.data_scale)

    with open(os.path.join('save', 'config.pkl'), 'w') as f:
        cPickle.dump(args, f)

    model = Model(args)

    with tf.Session() as sess:
        tf.initialize_all_variables().run()
        saver = tf.train.Saver(tf.all_variables())
        for e in xrange(args.num_epochs):
            sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e)))
            data_loader.reset_batch_pointer()
            state = model.initial_state.eval()
            for b in xrange(data_loader.num_batches):
                start = time.time()
                x, y = data_loader.next_batch()
                feed = {model.input_data: x, model.target_data: y, model.initial_state: state}
                train_loss, state, _ = sess.run([model.cost, model.final_state, model.train_op], feed)
                end = time.time()
                print "{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \
                    .format(e * data_loader.num_batches + b,
                            args.num_epochs * data_loader.num_batches,
                            e, train_loss, end - start)
                if (e * data_loader.num_batches + b) % args.save_every == 0 and ((e * data_loader.num_batches + b) > 0):
                    checkpoint_path = os.path.join('save', 'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step = e * data_loader.num_batches + b)
                    print "model saved to {}".format(checkpoint_path)
Exemple #2
0
def train(args):
  dim = 6
  data_loader = DataLoader(dim, args.batch_size, args.seq_length, reprocess=args.reprocess)
  x, y = data_loader.next_batch()

  if not os.path.exists(args.save_dir):
    os.mkdir(args.save_dir)

  with open(os.path.join(args.save_dir, 'config.pkl'), 'w') as f:
    cPickle.dump(args, f)

  model = Model(dim, args)

  with tf.Session() as sess:
    tf.initialize_all_variables().run()

    ts = TrainingStatus(sess, args.num_epochs, data_loader.num_batches, save_interval = args.save_every, graph_def = sess.graph_def, save_dir = args.save_dir)
    for e in xrange(ts.startEpoch, args.num_epochs):
      sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e)))
      data_loader.reset_batch_pointer()
      state = model.initial_state.eval()
      for b in xrange(data_loader.num_batches):
        ts.tic()
        x, y = data_loader.next_batch()
        feed = {model.input_data: x, model.target_data: y, model.initial_state: state}
        summary, train_loss, state, _ = sess.run([model.summary, model.cost, model.final_state, model.train_op], feed)
        print ts.tocBatch(summary, e, b, train_loss)
        
      ts.tocEpoch(sess, e)
Exemple #3
0
def evals(net, adata ,alabel, batch_size):
    hidden = net.begin_state(func=mx.nd.zeros,batch_size = batch_size,ctx=mx.cpu())
    dataLoader = DataLoader(adata, alabel)
    tl = 0
    for data, label in dataLoader.dataIter(batch_size):
        label = nd.array(label)
        #label = nd.ones(shape=(5,batch_size)) * label
        #label = label.reshape((-1,))
        dd = nd.array(data.reshape((batch_size,5,11)).swapaxes(0,1))
        #hidden = detach(hidden)
        output,hidden = net(dd, hidden)
        output = output.reshape((5,batch_size,1))
        output = nd.sum(output,axis=0)/5
        lv = loss(output, label)

        tl += nd.sum(lv).asscalar()
    return tl / len(adata)
Exemple #4
0
            related_path,
            antonyms_path,
            _embedding_size=EMBEDDING_SIZE)
lang.load_gensim_word2vec(embeddings_path)  # load pre-trained embeddings
# this creates TF matrix of embeddings
embeddings_matrix = lang.create_embeddings()
#embeddings_matrix = lang.create_temp_embeddings()
# this loads a matrix of on_sense -> related words mappings
related = load_related(related_path)

# load tf_records
tf_records_files = [
    path_to_tf_records + f for f in os.listdir(path_to_tf_records)
    if f[0] != "."
]
data_loader = DataLoader()
dataset = data_loader.make_dataset(tf_records_files, batch_size=BATCH_SIZE)
eval_data_loader = EvalDataLoader()
validation_dataset = eval_data_loader.make_dataset([path_to_valid_records],
                                                   batch_size=BATCH_SIZE)
test_dataset = eval_data_loader.make_dataset([path_to_test_records],
                                             batch_size=BATCH_SIZE)

train(embedding_matrix=embeddings_matrix,
      related_matrix=related,
      dataset=dataset,
      validation_dataset=validation_dataset,
      test_dataset=test_dataset,
      encoder_hidden_size=ENCODER_HIDDEN_SIZE,
      encoder_embedding_size=EMBEDDING_SIZE,
      _learning_rate=LEARNING_RATE,
Exemple #5
0
def train(args):

    # Construct the DataLoader object
    dataloader = DataLoader(args.batch_size, args.seq_length + 1, args.train_dataset, forcePreProcess=True)

    # Construct the ST-graph object
    stgraph = ST_GRAPH(1, args.seq_length + 1)

    # Log directory
    log_directory = 'log/trainedOn_'+ str(args.train_dataset)
    if not os.path.exists(log_directory):
            os.makedirs(log_directory)

    # Logging file
    log_file_curve = open(os.path.join(log_directory, 'log_curve.txt'), 'w')
    log_file = open(os.path.join(log_directory, 'val.txt'), 'w')

    # Save directory for saving the model
    save_directory = 'save/trainedOn_'+str(args.train_dataset)
    if not os.path.exists(save_directory):
        os.makedirs(save_directory)

    # Open the configuration file
    with open(os.path.join(save_directory, 'config.pkl'), 'wb') as f:
        pickle.dump(args, f)	#store arguments from parser

    # Path to store the checkpoint file
    def checkpoint_path(x):
        return os.path.join(save_directory, 'srnn_model_'+str(x)+'.tar')

    # Initialize net
    net = SRNN(args)
    if args.use_cuda:        
        net = net.cuda()

    # optimizer = torch.optim.Adam(net.parameters(), lr=args.learning_rate)
    # optimizer = torch.optim.RMSprop(net.parameters(), lr=args.learning_rate, momentum=0.0001, centered=True)
    optimizer = torch.optim.Adagrad(net.parameters())

    learning_rate = args.learning_rate
    print('Training begin')
    best_val_loss = 100
    best_epoch = 0

    # Training
    for epoch in range(args.num_epochs):
        dataloader.reset_batch_pointer(valid=False)
        loss_epoch = 0

        # For each batch
        for batch in range(dataloader.num_batches):
            start = time.time()

            # Get batch data
            x, _, _, d = dataloader.next_batch(randomUpdate=True)

            # Loss for this batch
            loss_batch = 0

            # For each sequence in the batch
            for sequence in range(dataloader.batch_size):
                # Construct the graph for the current sequence
                stgraph.readGraph([x[sequence]])

                nodes, edges, nodesPresent, edgesPresent = stgraph.getSequence()

                # Convert to cuda variables
                nodes = Variable(torch.from_numpy(nodes).float())
                if args.use_cuda:
                    nodes = nodes.cuda()
                edges = Variable(torch.from_numpy(edges).float())
                if args.use_cuda:
                    edges = edges.cuda()

                # Define hidden states
                numNodes = nodes.size()[1]
                hidden_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size))
                if args.use_cuda:
                    hidden_states_node_RNNs = hidden_states_node_RNNs.cuda()
                hidden_states_edge_RNNs = Variable(torch.zeros(numNodes*numNodes, args.human_human_edge_rnn_size))
                if args.use_cuda:
                    hidden_states_edge_RNNs = hidden_states_edge_RNNs.cuda()

                cell_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size))
                if args.use_cuda:
                    cell_states_node_RNNs = cell_states_node_RNNs.cuda()
                cell_states_edge_RNNs = Variable(torch.zeros(numNodes*numNodes, args.human_human_edge_rnn_size))
                if args.use_cuda:
                    cell_states_edge_RNNs = cell_states_edge_RNNs.cuda()

                # Zero out the gradients
                net.zero_grad()
                optimizer.zero_grad()

                # Forward prop
                outputs, _, _, _, _, _ = net(nodes[:args.seq_length], edges[:args.seq_length], nodesPresent[:-1], edgesPresent[:-1], hidden_states_node_RNNs, hidden_states_edge_RNNs, cell_states_node_RNNs, cell_states_edge_RNNs)

                # Compute loss
                loss = Gaussian2DLikelihood(outputs, nodes[1:], nodesPresent[1:], args.pred_length)
                loss_batch += loss.data[0]

                # Compute gradients
                loss.backward()

                # Clip gradients
                torch.nn.utils.clip_grad_norm(net.parameters(), args.grad_clip)

                # Update parameters
                optimizer.step()

                # Reset the stgraph
                stgraph.reset()

            end = time.time()
            loss_batch = loss_batch / dataloader.batch_size
            loss_epoch += loss_batch

            print(
                '{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}'.format(epoch * dataloader.num_batches + batch,
                                                                                    args.num_epochs * dataloader.num_batches,
                                                                                    epoch,
                                                                                    loss_batch, end - start))

        # Compute loss for the entire epoch
        loss_epoch /= dataloader.num_batches
        # Log it
        log_file_curve.write(str(epoch)+','+str(loss_epoch)+',')

        # Validation
        dataloader.reset_batch_pointer(valid=True)
        loss_epoch = 0

        for batch in range(dataloader.valid_num_batches):
            # Get batch data
            x, _, d = dataloader.next_valid_batch(randomUpdate=False)

            # Loss for this batch
            loss_batch = 0

            for sequence in range(dataloader.batch_size):
                stgraph.readGraph([x[sequence]])

                nodes, edges, nodesPresent, edgesPresent = stgraph.getSequence()

                # Convert to cuda variables
                nodes = Variable(torch.from_numpy(nodes).float())
                if args.use_cuda:
                    nodes = nodes.cuda()
                edges = Variable(torch.from_numpy(edges).float())
                if args.use_cuda:
                    edges = edges.cuda()

                # Define hidden states
                numNodes = nodes.size()[1]
                hidden_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size))
                if args.use_cuda:
                    hidden_states_node_RNNs = hidden_states_node_RNNs.cuda()
                hidden_states_edge_RNNs = Variable(torch.zeros(numNodes*numNodes, args.human_human_edge_rnn_size))
                if args.use_cuda:
                    hidden_states_edge_RNNs = hidden_states_edge_RNNs.cuda()
                cell_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size))
                if args.use_cuda:
                    cell_states_node_RNNs = cell_states_node_RNNs.cuda()
                cell_states_edge_RNNs = Variable(torch.zeros(numNodes*numNodes, args.human_human_edge_rnn_size))
                if args.use_cuda:
                    cell_states_edge_RNNs = cell_states_edge_RNNs.cuda()

                outputs, _, _, _, _, _ = net(nodes[:args.seq_length], edges[:args.seq_length], nodesPresent[:-1], edgesPresent[:-1],
                                             hidden_states_node_RNNs, hidden_states_edge_RNNs,
                                             cell_states_node_RNNs, cell_states_edge_RNNs)

                # Compute loss
                loss = Gaussian2DLikelihood(outputs, nodes[1:], nodesPresent[1:], args.pred_length)

                loss_batch += loss.data[0]

                # Reset the stgraph
                stgraph.reset()

            loss_batch = loss_batch / dataloader.batch_size
            loss_epoch += loss_batch

        loss_epoch = loss_epoch / dataloader.valid_num_batches


        #Saving the model\
        if loss_epoch < best_val_loss or args.save_every:
            print('Saving model')
            torch.save({
            'epoch': epoch,
            'state_dict': net.state_dict(),
            'optimizer_state_dict': optimizer.state_dict()
            }, checkpoint_path(epoch)) 

        #save_best_model overwriting the earlier file
        #if loss_epoch < best_val_loss:


        # Update best validation loss until now
        if loss_epoch < best_val_loss:
            best_val_loss = loss_epoch
            best_epoch = epoch
                      
        # Record best epoch and best validation loss
        print('(epoch {}), valid_loss = {:.3f}'.format(epoch, loss_epoch))
        print('Best epoch {}, Best validation loss {}'.format(best_epoch, best_val_loss))
        # Log it
        log_file_curve.write(str(loss_epoch)+'\n')

        

    # Record the best epoch and best validation loss overall
    print('Best epoch {}, Best validation loss {}'.format(best_epoch, best_val_loss))
    # Log it
    log_file.write(str(best_epoch)+','+str(best_val_loss))

    # Close logging files
    log_file.close()
    log_file_curve.close()
def train(args):
    prefix = ''
    f_prefix = '.'
    
    if not os.path.isdir("log/"):
        print("Directory creation script is running...")
        subprocess.call([f_prefix+'/make_directories.sh'])

    args.freq_validation = np.clip(args.freq_validation, 0, args.num_epochs)
    validation_epoch_list = list(range(args.freq_validation, args.num_epochs+1, args.freq_validation))
    validation_epoch_list[-1]-=1


    # Create the data loader object. This object would preprocess the data in terms of
    # batches each of size args.batch_size, of length args.seq_length
    dataloader = DataLoader(f_prefix, args.batch_size, args.seq_length, args.num_validation, forcePreProcess=True)

    method_name = "VANILLALSTM"
    model_name = "LSTM"
    save_tar_name = method_name+"_lstm_model_"
    if args.gru:
        model_name = "GRU"
        save_tar_name = method_name+"_gru_model_"

    # Log directory
    log_directory = os.path.join(prefix, 'log/')
    plot_directory = os.path.join(prefix, 'plot/', method_name, model_name)
    plot_train_file_directory = 'validation'



    # Logging files
    log_file_curve = open(os.path.join(log_directory, method_name, model_name,'log_curve.txt'), 'w+')
    log_file = open(os.path.join(log_directory, method_name, model_name, 'val.txt'), 'w+')

    # model directory
    save_directory = os.path.join(f_prefix, 'model')
    
    # Save the arguments int the config file
    with open(os.path.join(save_directory, method_name, model_name,'config.pkl'), 'wb') as f:
        pickle.dump(args, f)

    # Path to store the checkpoint file
    def checkpoint_path(x):
        return os.path.join(save_directory, method_name, model_name, save_tar_name+str(x)+'.tar')
    
    # model creation
    net = LSTM(args)
    if args.use_cuda:
        net = net.cuda()

    # optimizer = torch.optim.Adagrad(net.parameters(), weight_decay=args.lambda_param)
    optimizer = torch.optim.RMSprop(net.parameters(), lr=args.learning_rate)
    loss_f = torch.nn.MSELoss()
    learning_rate = args.learning_rate

    best_val_loss = 100
    best_val_data_loss = 100

    smallest_err_val = 100000
    smallest_err_val_data = 100000


    best_epoch_val = 0
    best_epoch_val_data = 0

    best_err_epoch_val = 0
    best_err_epoch_val_data = 0

    all_epoch_results = []
    grids = []
    num_batch = 0

    # Training
    for epoch in range(args.num_epochs):
        print('****************Training epoch beginning******************')
        if dataloader.additional_validation and (epoch-1) in validation_epoch_list:
            dataloader.switch_to_dataset_type(True)
        dataloader.reset_batch_pointer(valid=False)
        loss_epoch = 0
        # For each batch
        # num_batches 資料可以被分多少批 要跑幾個iter
        
        for batch in range(dataloader.num_batches):
            start = time.time()

            # print(dataloader.num_batches, dataloader.batch_size)
            
            # Get batch data
            x, y, d = dataloader.next_batch(randomUpdate=False)
            
            loss_batch = 0

            # x_cat = Variable(torch.from_numpy(np.array(x[0])).float())
            x_seq = np.array(x)
            y_seq = np.array(y)
            x_seq = Variable(torch.from_numpy(x_seq).float())
            y_seq = Variable(torch.from_numpy(y_seq).float())
            temp = x_seq[:,:,-2:]
            x_seq = x_seq[:,:,:-2]
            y_seq = y_seq[:,:,:3]
            
            hidden_states = Variable(torch.zeros(x_seq.size()[0], args.rnn_size))
            cell_states = Variable(torch.zeros(x_seq.size()[0], args.rnn_size))

            if args.use_cuda:                  
                x_seq = x_seq.cuda()
                y_seq = y_seq.cuda()
                temp = temp.cuda()
                hidden_states = hidden_states.cuda()
                cell_states = cell_states.cuda()

            # Zero out gradients
            net.zero_grad()
            optimizer.zero_grad()
            
            outputs, _, _ = net(x_seq, temp, hidden_states, cell_states)

            loss = loss_f(outputs, y_seq)
            loss_batch = loss.detach().item()

            # Compute gradients
            loss.backward()

            # Clip gradients
            torch.nn.utils.clip_grad_norm_(net.parameters(), args.grad_clip)

            # Update parameters
            optimizer.step()

            end = time.time()
            loss_epoch += loss_batch

            print('{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}'.format((batch+1) * dataloader.batch_size,
                                                                                    dataloader.num_batches * dataloader.batch_size,
                                                                                    epoch,
                                                                                    loss_batch, end - start))
        loss_epoch /= dataloader.num_batches
        print("Training epoch: "+str(epoch)+" loss: "+str(loss_epoch))
        #Log loss values
        log_file_curve.write("Training epoch: "+str(epoch)+" loss: "+str(loss_epoch)+'\n')


        # Validation dataset
        if dataloader.additional_validation and (epoch) in validation_epoch_list:
            dataloader.switch_to_dataset_type()
            print('****************Validation with dataset epoch beginning******************')
            dataloader.reset_batch_pointer(valid=False)
            dataset_pointer_ins = dataloader.dataset_pointer
            validation_dataset_executed = True

            loss_epoch = 0
            err_epoch = 0
            num_of_batch = 0
            smallest_err = 100000

            #results of one epoch for all validation datasets
            epoch_result = []
            #results of one validation dataset
            results = []

            # For each batch
            for batch in range(dataloader.num_batches):
                # Get batch data
                x, y, d = dataloader.next_batch(randomUpdate=False)

                # Loss for this batch
                loss_batch = 0
                err_batch = 0

                # For each sequence
                for sequence in range(len(x)):
                    # Get the sequence
                    x_seq = x[sequence]
                    y_seq = y[sequence]
                    x_seq= np.array(x_seq)
                    y_seq= np.array(y_seq)[:,:3]
                    x_seq = Variable(torch.from_numpy(x_seq).float())
                    y_seq = Variable(torch.from_numpy(y_seq).float())

                    temp = x_seq[:,-2:]
                    x_seq = x_seq[:,:-2]
                    y_seq = y_seq[:,:3]

                    if args.use_cuda:
                        x_seq = x_seq.cuda()
                        y_seq = y_seq.cuda()
                        temp = temp.cuda()

                    #will be used for error calculation
                    orig_x_seq = y_seq.clone() 

                    # print(x_seq.size(), args.seq_length)

                    with torch.no_grad():
                        hidden_states = Variable(torch.zeros(1, args.rnn_size))
                        cell_states = Variable(torch.zeros(1, args.rnn_size))
                        ret_x_seq = Variable(torch.zeros(args.seq_length, net.input_size))
                        # all_outputs = Variable(torch.zeros(1, args.seq_length, net.input_size))

                        # Initialize the return data structure
                        if args.use_cuda:
                            ret_x_seq = ret_x_seq.cuda()
                            hidden_states = hidden_states.cuda()
                            cell_states = cell_states.cuda()

                        total_loss = 0
                        # For the observed part of the trajectory
                        for tstep in range(args.seq_length):
                            outputs, hidden_states, cell_states = net(x_seq[tstep].view(1, 1, net.input_size), temp[tstep].view(1, 1, temp.size()[-1]), hidden_states, cell_states)
                            ret_x_seq[tstep, 0] = outputs[0,0,0]
                            ret_x_seq[tstep, 1] = outputs[0,0,1]
                            ret_x_seq[tstep, 2] = outputs[0,0,2]
                            print(outputs.size(), )
                            loss = loss_f(outputs, y_seq[tstep].view(1, 1, y_seq.size()[1]))
                            total_loss += loss

                        total_loss = total_loss / args.seq_length

                    #get mean and final error
                    # print(ret_x_seq.size(), y_seq.size())
                    err = get_mean_error(ret_x_seq.data, y_seq.data, args.use_cuda)

                    loss_batch += total_loss.item()
                    err_batch += err
                    print('Current file : ',' Batch : ', batch+1, ' Sequence: ', sequence+1, ' Sequence mean error: ', err, 'valid_loss: ',total_loss.item())
                    results.append((y_seq.data.cpu().numpy(), ret_x_seq.data.cpu().numpy()))

                loss_batch = loss_batch / dataloader.batch_size
                err_batch = err_batch / dataloader.batch_size
                num_of_batch += 1
                loss_epoch += loss_batch
                err_epoch += err_batch

            epoch_result.append(results)
            all_epoch_results.append(epoch_result)

            if dataloader.num_batches != 0:            
                loss_epoch = loss_epoch / dataloader.num_batches
                err_epoch = err_epoch / dataloader.num_batches
                # avarage_err = (err_epoch + f_err_epoch)/2

                # Update best validation loss until now
                if loss_epoch < best_val_data_loss:
                    best_val_data_loss = loss_epoch
                    best_epoch_val_data = epoch

                if err_epoch<smallest_err_val_data:
                    # Save the model after each epoch
                    print('Saving model')
                    torch.save({
                        'epoch': epoch,
                        'state_dict': net.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict()
                    }, checkpoint_path(epoch))

                    smallest_err_val_data = err_epoch
                    best_err_epoch_val_data = epoch

                print('(epoch {}), valid_loss = {:.3f}, valid_mean_err = {:.3f}'.format(epoch, loss_epoch, err_epoch))
                print('Best epoch', best_epoch_val_data, 'Best validation loss', best_val_data_loss, 'Best error epoch',best_err_epoch_val_data, 'Best error', smallest_err_val_data)
                log_file_curve.write("Validation dataset epoch: "+str(epoch)+" loss: "+str(loss_epoch)+" mean_err: "+str(err_epoch.data.cpu().numpy())+'\n')
            


        optimizer = time_lr_scheduler(optimizer, epoch, lr_decay_epoch = args.freq_optimizer)

    if dataloader.valid_num_batches != 0:        
        print('Best epoch', best_epoch_val, 'Best validation Loss', best_val_loss, 'Best error epoch',best_err_epoch_val, 'Best error', smallest_err_val)
        # Log the best epoch and best validation loss
        log_file.write('Validation Best epoch:'+str(best_epoch_val_data)+','+' Best validation Loss: '+str(best_val_data_loss))

    if dataloader.additional_validation:
        print('Best epoch acording to validation dataset', best_epoch_val_data, 'Best validation Loss', best_val_data_loss, 'Best error epoch',best_err_epoch_val_data, 'Best error', smallest_err_val_data)
        log_file.write("Validation dataset Best epoch: "+str(best_epoch_val_data)+','+' Best validation Loss: '+str(best_val_data_loss)+'Best error epoch: ',str(best_err_epoch_val_data),'\n')
        #dataloader.write_to_plot_file(all_epoch_results[best_epoch_val_data], plot_directory)

    #elif dataloader.valid_num_batches != 0:
    #    dataloader.write_to_plot_file(all_epoch_results[best_epoch_val], plot_directory)

    #else:
    if validation_dataset_executed:
        dataloader.switch_to_dataset_type(load_data=False)
        create_directories(plot_directory, [plot_train_file_directory])
        dataloader.write_to_plot_file(all_epoch_results[len(all_epoch_results)-1], os.path.join(plot_directory, plot_train_file_directory))

    # Close logging files
    log_file.close()
    log_file_curve.close()
Exemple #7
0
class data_augmentator():
	# class for data augmentation

	def __init__(self,f_prefix, num_of_data, seq_length, val_percent):

		self.base_train_path = 'data/train/'
		self.base_validation_path = 'data/validation/'

		# list of angles will be use for rotation
		self.angles = list(range(0,360,30))
		self.num_of_data = np.clip(num_of_data, 0, len(self.angles) -1)
		self.num_validation_data = math.ceil(self.num_of_data * val_percent) # number of validation dataset
		self.num_train_data = self.num_of_data - self.num_validation_data # number of train dataset
		print("For each dataset -----> Number of additional training dataset: ", self.num_train_data, " Number of validation dataset: ", self.num_validation_data)

		self.num_validation_data =+1
		self.seq_length = seq_length
		self.val_percent = val_percent
		self.f_prefix = f_prefix


		self.dataloader = DataLoader(f_prefix, 1, seq_length , 0 ,forcePreProcess = True, infer = False, generate=True)
		
		# noise parameter definition
		self.noise_std_min = 0.05
		self.noise_std_max = 0.15
		self.noise_std = random.uniform(self.noise_std_min, self.noise_std_max)
		self.noise_mean = 0.0

		# remove datasets from directories for new creation
		self.clear_directories(self.base_train_path)
		self.clear_directories(self.base_validation_path, True)
		self.random_dataset_creation()

	def random_dataset_creation(self):

		self.dataloader.reset_batch_pointer(valid=False)
		dataset_pointer_ins = self.dataloader.dataset_pointer
		dataset_instances = {}
		whole_dataset = []
		random_angles = random.sample(self.angles, self.num_of_data)
		file_name = self.dataloader.get_file_name()
		print("Dataset creation for: ", file_name, " angles: ", random_angles)



		for batch in range(self.dataloader.num_batches):
			start = time.time()
			# Get data
			x, y, d , numPedsList, PedsList, _= self.dataloader.next_batch()
			dir_name = self.dataloader.get_directory_name()
			file_name = self.dataloader.get_file_name()

			# Get the sequence
			x_seq,d_seq ,numPedsList_seq, PedsList_seq = x[0], d[0], numPedsList[0], PedsList[0]

			# convert dense vector
			x_seq , lookup_seq = self.dataloader.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq)

			if dataset_pointer_ins is not self.dataloader.dataset_pointer:
			    if self.dataloader.dataset_pointer is not 0:
			        whole_dataset.append(dataset_instances)
			        dataset_instances = {}
			        random_angles = random.sample(self.angles, self.num_of_data) # sample new angle
			        self.noise_std = random.uniform(self.noise_std_min, self.noise_std_max) #sample new noise
			        print("Dataset creation for: ", file_name, " angles: ", random_angles)

			    dataset_pointer_ins = self.dataloader.dataset_pointer

			for index, angle in enumerate(random_angles):
				self.noise_std = random.uniform(self.noise_std_min, self.noise_std_max)
				# modify and preprocess dataset
				modified_x_seq = self.submision_seq_preprocess(self.handle_seq(x_seq, lookup_seq, PedsList_seq, angle), self.seq_length, lookup_seq)
				# store modified data points to dict
				self.dataloader.add_element_to_dict(dataset_instances, (dir_name, file_name, index), modified_x_seq)

			end = time.time()
			print('Current file : ', file_name,' Processed trajectory number : ', batch+1, 'out of', self.dataloader.num_batches, 'trajectories in time', end - start)

		# write modified datapoints to txt files
		whole_dataset.append(dataset_instances)
		createDirectories(os.path.join(self.f_prefix, self.base_validation_path), self.dataloader.get_all_directory_namelist())
		self.write_modified_datasets(whole_dataset)


	def handle_seq(self, x_seq, lookup_seq, PedsList_seq, angle):
		# add noise and rotate a trajectory
		vectorized_x_seq, first_values_dict = vectorizeSeq(x_seq, PedsList_seq, lookup_seq)
		modified_x_seq = vectorized_x_seq.clone()
		mean = torch.FloatTensor([self.noise_mean, self.noise_mean])
		stddev =torch.FloatTensor([self.noise_std, self.noise_std])
		origin = (0, 0)

		for ind, frame in enumerate(vectorized_x_seq):
			for ped in PedsList_seq[ind]:
				selected_point = frame[lookup_seq[ped], :]
				# rotate a frame point
				rotated_point = rotate(origin, selected_point, math.radians(angle))
				noise =  torch.normal(mean, stddev).clone()
				# add random noise
				modified_x_seq[ind, lookup_seq[ped], 0] = rotated_point[0] + noise[0]
				modified_x_seq[ind, lookup_seq[ped], 1] = rotated_point[1] + noise[1]
				#modified_x_seq[ind, lookup_seq[ped], :] = torch.cat(rotate(origin, first_values_dict[ped], math.radians(angle))) + modified_x_seq[ind, lookup_seq[ped], :]
				#roatate first frame value as well and add it back to get absoute coordinates
				modified_x_seq[ind, lookup_seq[ped], 0] = (rotate(origin, first_values_dict[ped], math.radians(angle)))[0] + modified_x_seq[ind, lookup_seq[ped], 0]
				modified_x_seq[ind, lookup_seq[ped], 1] = (rotate(origin, first_values_dict[ped], math.radians(angle)))[1] + modified_x_seq[ind, lookup_seq[ped], 1]


		return modified_x_seq
    
	def submision_seq_preprocess(self, x_seq, seq_lenght, lookup_seq):
		# create original txt structure for modified datapoints 
		ret_x_seq_c = x_seq.data.numpy()
		ped_ids = self.dataloader.get_id_sequence(seq_lenght)
		positions_of_peds = [lookup_seq[ped] for ped in ped_ids]
		ret_x_seq_c = ret_x_seq_c[:, positions_of_peds, :]
		ret_x_seq_c_selected = ret_x_seq_c[:,0,:]
		ret_x_seq_c_selected[:,[0,1]] = ret_x_seq_c_selected[:,[1,0]]
		frame_numbers = self.dataloader.get_frame_sequence(seq_lenght)
		id_integrated_seq = np.append(np.array(ped_ids)[:,None], ret_x_seq_c_selected, axis=1)
		frame_integrated_seq = np.append(frame_numbers[:, None], id_integrated_seq, axis=1)

		return frame_integrated_seq

	def write_modified_datasets(self, dataset_instances_store):
		# write constructed txt structure to txt file
		self.dataloader.reset_batch_pointer()

		for dataset_index in range(self.dataloader.numDatasets):
			dataset_instances = dataset_instances_store[dataset_index]
			train_sub_instances = dict(random.sample(dataset_instances.items(), self.num_train_data))
			validation_sub_instances = {k: v for k, v in dataset_instances.items() if k not in train_sub_instances}
			print("*********************************************************************************")
			print("Training datasets are writing for: ", self.dataloader.get_file_name(dataset_index))
			self.write_dict(train_sub_instances, self.base_train_path)
			print("*********************************************************************************")
			print("Validation datasets are writing for: ", self.dataloader.get_file_name(dataset_index))
			self.write_dict(validation_sub_instances, self.base_validation_path)

	def write_dict(self, dict, base_path):
		cleared_direcories = []
		for key, value in dict.items():
			path = os.path.join(self.f_prefix, base_path, key[0])
			ext_removed_file_name = removeFileExtention(key[1])
			file_name = ext_removed_file_name + "_" + str(key[2])
			file_name = addFileExtention(file_name, 'txt')
			self.dataloader.write_dataset(value, file_name, path)
	
	def clear_directories(self, base_path, delete_all = False):
		# delete all files from a directory
		print("Clearing directories...")
		dir_names = self.dataloader.get_all_directory_namelist()
		base_path = os.path.join(self.f_prefix, base_path)
		for dir_ in dir_names:
			dir_path = os.path.join(base_path, dir_)
			file_names = getAllFileNames(dir_path)
			if delete_all:
				base_file_names = []
			else:
				base_file_names = self.dataloader.get_base_file_name(dir_)
			[deleteFile(dir_path, [file_name]) for file_name in file_names if file_name not in base_file_names]
Exemple #8
0
# %% Imports
from utils import DataLoader
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import f1_score, accuracy_score
from interpret.blackbox import LimeTabular
from interpret import show

# %% Load and preprocess data
data_loader = DataLoader()
data_loader.load_dataset()
data_loader.preprocess_data()
# Split the data for evaluation
X_train, X_test, y_train, y_test = data_loader.get_data_split()
# Oversample the train data
X_train, y_train = data_loader.oversample(X_train, y_train)
print(X_train.shape)
print(X_test.shape)

# %% Fit blackbox model
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
print(f"F1 Score {f1_score(y_test, y_pred, average='macro')}")
print(f"Accuracy {accuracy_score(y_test, y_pred)}")

# %% Apply lime
# Initilize Lime for Tabular data
lime = LimeTabular(predict_fn=rf.predict_proba, data=X_train, random_state=1)
# Get local explanations
lime_local = lime.explain_local(X_test[-20:], y_test[-20:], name='LIME')
Exemple #9
0
save_every = args.save_every
num_epochs = args.num_epochs
workdir = args.workdir
is_verbose = args.verbose
use_pretrained_model = args.pretrained_embedding

learning_rate = args.lr

logpath = os.path.abspath(os.path.join(workdir, args.logfile))
log_reset(logpath)

# logpath = os.path.abspath(os.path.join(workdir, "runs"))
# with subprocess.Popen(['tensorboard', '--logdir', logpath]):
"""Loading datasets"""
dataloader_train = DataLoader('dataset/sentences.train',
                              vocab_size,
                              max_size,
                              workdir=workdir)
dataloader_eval = DataLoader('dataset/sentences.eval',
                             vocab_size,
                             max_size,
                             workdir=workdir)
"""Get the vocab and save it to vocab.dat.
If method not called, the model tries to open vocab.dat
Otherwise if no savefile is given, just loads the vocab
directly.
Uncomment to generate the vocab.dat file"""

# dataloader_train.compute_vocab(savefile='vocab.dat')
"""Let's do some test on the dataloader..."""

# Get the word to index correspondance for the embedding.
Exemple #10
0
if __name__ == '__main__':
    from utils import loadDataLabel3, DataLoader
    a,b,c,d = loadDataLabel3('three_pt',0.7)
    print(d.shape)
    rnn = RNN("rnn_tanh",11,100,2)
    rnn.collect_params().initialize(mx.init.Xavier())
    batch_size = 256
    clipping_norm = 0.1
    num_steps = 5
    loss = mx.gluon.loss.L2Loss()
    trainer = mx.gluon.Trainer(rnn.collect_params(),'sgd',{
        'learning_rate':0.5,
        "wd":0.00
    })
    dataLoader = DataLoader(a,b)
    trl = []
    tel = []
    for epoch in range(500):
        total_L = 0.0
        hidden = rnn.begin_state(func=mx.nd.zeros,batch_size = batch_size,ctx=mx.cpu())

        for data,label in dataLoader.dataIter(batch_size):
            label = nd.array(label)
           # print("label shape" ,label.shape)
            #label = nd.ones(shape=(5,32)) * label
            #label = label.reshape((-1,))
            dd = nd.array(data.reshape((batch_size,5,11)).swapaxes(0,1))
            hidden = detach(hidden)
            with mx.autograd.record():
                output, hidden = rnn(dd,hidden)
Exemple #11
0
    print('test prediction gt = {}'.format(test_gt))

# define testing generator function and
# in testing, only generator networks, there is no discriminator networks and flownet.
with tf.variable_scope('generator', reuse=None):
    print('testing = {}'.format(tf.get_variable_scope().name))
    test_outputs = generator(test_inputs, layers=const.LAYERS, output_channel=3)
    test_psnr_error = psnr_error(gen_frames=test_outputs, gt_frames=test_gt)
    diff_mask_tensor = diff_mask(test_outputs, test_gt)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True

with tf.Session(config=config) as sess:
    # dataset
    data_loader = DataLoader(test_folder, height, width)

    # initialize weights
    sess.run(tf.global_variables_initializer())
    print('Init global successfully!')

    # tf saver
    saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=None)

    restore_var = [v for v in tf.global_variables()]
    loader = tf.train.Saver(var_list=restore_var)
    load(loader, sess, snapshot_dir)
    videos_info = data_loader.videos
    num_videos = len(videos_info.keys())
    print('Num videos: ', num_videos)
    total = 0
Exemple #12
0
 def dataload(self, train_data, train_label, test_data, test_label):
     self.train_data = train_data
     self.train_label = train_label
     self.test_data = test_data
     self.test_label = test_label
     self.dataLoader = DataLoader(self.train_data, self.train_label)
Exemple #13
0
class MLPTrainer(object):
    paramsFloder = './params/MLP'

    def __init__(self,
                 labelName,
                 loss,
                 net='mlp',
                 bn=False,
                 dropout=None,
                 all=False):
        self.all = all
        self.labelName = labelName
        self.labelIndex = OutputData.colName().index(labelName)
        self.bn = bn
        self.dropout = dropout
        if net == 'mlp':
            self.net = MLP(bn, dropout)
        elif net == 'smlp':
            self.net = SampleMLP(bn, dropout)
        #self.net = MLP(bn,dropout)
        self.loss = loss

    def initnet(self, lr, wd, opt='adam', init='x'):
        self.lr = lr
        self.wd = wd
        if init == 'x':
            self.net.collect_params().initialize(mx.init.Xavier(),
                                                 force_reinit=True)
        else:
            self.net.initialize()

        self.trainer = gluon.Trainer(self.net.collect_params(), opt, {
            'learning_rate': self.lr,
            'wd': self.wd
        })

    def dataload(self, train_data, train_label, test_data, test_label):
        self.train_data = train_data
        self.train_label = train_label
        self.test_data = test_data
        self.test_label = test_label
        self.dataLoader = DataLoader(self.train_data, self.train_label)

    def train(self, epochs, batch_size, con=False, ctx=None):
        self.train_loss = []
        self.test_loss = []
        if con:
            self.load(ctx=ctx)
        t1 = time.time()
        for epoch in range(epochs):
            train_loss = 0.0
            if is_sigint_up:
                break
            for data, label in self.dataLoader.dataIter(batch_size):
                with autograd.record():
                    output = self.net(data)
                    lossv = self.loss(output, label)
                lossv.backward()
                self.trainer.step(batch_size)

                train_loss += nd.sum(lossv).asscalar()
            ptrain_loss = self.eval(self.train_data, self.train_label)
            ptest_loss = self.eval(self.test_data, self.test_label)
            self.test_loss.append(ptest_loss / len(self.test_data))
            self.train_loss.append(ptrain_loss / len(self.train_data))
            #train_acc = self.accuracy(self.train_data,self.train_label)
            #test_acc = self.accuracy(self.test_data, self.test_label)
            # train_acc = 0.0
            # test_acc = 0.0
            #print('Epoch %d : Train loss -> %f Test loss -> %f Train acc -> %f Test acc -> %f' % (epoch, self.train_loss[-1], self.test_loss[-1],
            #    train_acc, test_acc))
            print("'Epoch %d : Train loss -> %f Test loss -> %f" %
                  (epoch, self.train_loss[-1], self.test_loss[-1]))
        t2 = time.time()
        print("Time : ", (t2 - t1) / epochs)
        p = input('plot ? (y/n)')
        if p.lower() == 'y':
            self.plot()
        r = input('save params ? (y/n)')
        if r.lower() == 'y':
            self.save()

    def plot(self):
        plt.figure(figsize=(8, 6))
        plt.plot(self.train_loss)
        plt.plot(self.test_loss)
        plt.legend(['train', 'test'])
        plt.xlabel('Epoch')
        plt.ylabel('Loss Value')
        plt.show()

    def eval(self, data, label):
        data = nd.array(data)
        label = nd.array(label)
        #print(output[:,0]-test_label)
        #print(data.shape,label.shape)
        output = self.net(data)
        return nd.sum(self.loss(output, label)).asscalar()
        #loss = nd.sqrt(2*nd.sum(nd.power(output.reshape(label.shape) - label,2))).asscalar()
        #return loss
    def predict(self, x):

        x = nd.array(x)
        l = self.net(x)
        #print('x : ',x.shape)
        return l.argmax(axis=1)

    def save(self):
        loss_folder = "./loss"
        if not os.path.exists(loss_folder):
            os.makedirs(loss_folder)

        with open(os.path.join(loss_folder,
                               self.labelName + str(self.lr) + 'txt'),
                  'w',
                  newline="") as f:
            writer = csv.writer(f)
            #print(self.train_loss)
            writer.writerows([self.train_loss, self.test_loss])
        name = self.labelName + str(self.lr) + '.txt'
        paramsFile = os.path.join(self.paramsFloder, name)
        self.net.save_params(paramsFile)

    def load(self, ctx=None):
        name = self.labelName + str(self.lr) + '.txt'
        paramsFile = os.path.join(self.paramsFloder, name)
        self.net.load_params(paramsFile, ctx)

    def accuracy(self, data, label):
        output = self.net(data)
        #print(output.argmax(axis=1))
        return nd.mean(output.argmax(axis=1) == label).asscalar()
Exemple #14
0
from __future__ import division
from __future__ import print_function

from utils import DataLoader

import numpy as np
from sklearn import metrics
import pandas

import tensorflow as tf
from tensorflow.contrib import learn

### Training data

print("LOAD")
loader = DataLoader('data/tweets', 5, 144)
x, y = loader.get_xy()
split = int(len(x) * 0.8)
X_train, X_test = x[:split], x[split:]
y_train, y_test = pandas.Series(y[:split]), pandas.Series(y[split:])
y_train = y_train.convert_objects(convert_numeric=True)
y_test = y_test.convert_objects(convert_numeric=True)

### Process vocabulary

MAX_DOCUMENT_LENGTH = 144

print("PREPROCESS")
char_processor = learn.preprocessing.ByteProcessor(MAX_DOCUMENT_LENGTH)
X_train = np.array(list(char_processor.fit_transform(X_train)))
X_test = np.array(list(char_processor.transform(X_test)))
Exemple #15
0
def train(args):
    data_loader = DataLoader(args.batch_size, args.seq_length, args.data_scale)

    if args.model_dir != '' and not os.path.exists(args.model_dir):
        os.makedirs(args.model_dir)

    with open(os.path.join(args.model_dir, 'config.pkl'), 'wb') as f:
        pickle.dump(args, f)

    model = Model(args)

    with tf.Session() as sess:
        summary_writer = tf.summary.FileWriter(
            os.path.join(args.model_dir, 'log'), sess.graph)

        tf.global_variables_initializer().run()
        saver = tf.train.Saver(tf.global_variables())
        for e in range(args.num_epochs):
            sess.run(tf.assign(model.lr,
                               args.learning_rate * (args.decay_rate ** e)))
            data_loader.reset_batch_pointer()
            v_x, v_y = data_loader.validation_data()
            valid_feed = {
                model.input_data: v_x,
                model.target_data: v_y,
                model.state_in: model.state_in.eval()}
            state = model.state_in.eval()
            for b in range(data_loader.num_batches):
                ith_train_step = e * data_loader.num_batches + b
                start = time.time()
                x, y = data_loader.next_batch()
                feed = {
                    model.input_data: x,
                    model.target_data: y,
                    model.state_in: state}
                train_loss_summary, train_loss, state, _ = sess.run(
                    [model.train_loss_summary, model.cost, model.state_out, model.train_op], feed)
                summary_writer.add_summary(train_loss_summary, ith_train_step)

                valid_loss_summary, valid_loss, = sess.run(
                    [model.valid_loss_summary, model.cost], valid_feed)
                summary_writer.add_summary(valid_loss_summary, ith_train_step)

                end = time.time()
                print(
                    "{}/{} (epoch {}), train_loss = {:.3f}, valid_loss = {:.3f}, time/batch = {:.3f}"
                    .format(
                        ith_train_step,
                        args.num_epochs * data_loader.num_batches,
                        e,
                        train_loss,
                        valid_loss,
                        end - start))
                if (ith_train_step %
                        args.save_every == 0) and (ith_train_step > 0):
                    checkpoint_path = os.path.join(
                        args.model_dir, 'model.ckpt')
                    saver.save(
                        sess,
                        checkpoint_path,
                        global_step=ith_train_step)
                    print("model saved to {}".format(checkpoint_path))
Exemple #16
0
else:
    gpus = ""
    for i in range(len(args.gpus)):
        gpus = gpus + args.gpus[i] + ","
    os.environ["CUDA_VISIBLE_DEVICES"] = gpus[:-1]
#os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2'
torch.backends.cudnn.enabled = True  # make sure to use cudnn for computational performance  确保使用cudnn

train_folder = args.dataset_path + args.dataset_type + "/training/frames/"
#train_folder = args.dataset_path + args.dataset_type + "/videos/training_frames/"
test_folder = args.dataset_path + args.dataset_type + "/testing/frames/"

train_dataset = DataLoader(train_folder,
                           transforms.Compose([
                               transforms.ToTensor(),
                           ]),
                           resize_height=args.h,
                           resize_width=args.w,
                           time_step=args.t_length - 1)
# transforms.ToTensor() 将numpy的ndarray或PIL.Image读的图片转换成形状为(C,H, W)的Tensor格式,且/255归一化到[0,1.0]之间

train_size = len(train_dataset)
print(train_size)
split = int(np.floor(args.vali * train_size))
# 在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出。就是做一个数据的初始化
val_size = int(args.vali * len(train_dataset))  #验证用20%的训练集
train_size = int(len(train_dataset) - val_size)  #训练集就是剩下80%
train_dataset, valid_dataset = torch.utils.data.random_split(
    train_dataset, [train_size, val_size])
train_loader = data.DataLoader(train_dataset,
                               batch_size=args.batch_size,
Exemple #17
0
def train(args):
    origin = (0, 0)
    reference_point = (0, 1)
    validation_dataset_executed = False

    prefix = ''
    f_prefix = '.'

    if args.drive is True:
        prefix = 'drive/semester_project/social_lstm_final/'
        f_prefix = 'drive/semester_project/social_lstm_final'

    if not os.path.isdir("log/"):
        print("Directory creation script is running...")
        subprocess.call([f_prefix + '/make_directories.sh'])

    args.freq_validation = np.clip(args.freq_validation, 0, args.num_epochs)
    validation_epoch_list = list(
        range(args.freq_validation, args.num_epochs + 1, args.freq_validation))
    validation_epoch_list[-1] -= 1

    # Create the data loader object. This object would preprocess the data in terms of
    # batches each of size args.batch_size, of length args.seq_length
    dataloader = DataLoader(f_prefix,
                            args.batch_size,
                            args.seq_length,
                            args.num_validation,
                            forcePreProcess=True)

    method_name = "OBSTACLELSTM"
    model_name = "LSTM"
    save_tar_name = method_name + "_lstm_model_"
    if args.gru:
        model_name = "GRU"
        save_tar_name = method_name + "_gru_model_"

    # Log directory
    log_directory = os.path.join(prefix, 'log/')
    plot_directory = os.path.join(prefix, 'plot/', method_name, model_name)
    plot_train_file_directory = 'validation'

    # Logging files
    log_file_curve = open(
        os.path.join(log_directory, method_name, model_name, 'log_curve.txt'),
        'w+')
    log_file = open(
        os.path.join(log_directory, method_name, model_name, 'val.txt'), 'w+')

    # model directory
    save_directory = os.path.join(prefix, 'model/')
    # save_directory += str(args.leaveDataset) + '/'

    # Save the arguments in the config file
    with open(
            os.path.join(save_directory, method_name, model_name,
                         'config.pkl'), 'wb') as f:
        pickle.dump(args, f)

    # Path to store the checkpoint file
    def checkpoint_path(x):
        return os.path.join(save_directory, method_name, model_name,
                            save_tar_name + str(x) + '.tar')

    # model creation
    net = OLSTMModel(args)
    if args.use_cuda:
        net = net.cuda()

    # optimizer = torch.optim.RMSprop(net.parameters(), lr=args.learning_rate)
    optimizer = torch.optim.Adagrad(net.parameters(),
                                    weight_decay=args.lambda_param)
    # optimizer = torch.optim.Adam(net.parameters(), weight_decay=args.lambda_param)

    learning_rate = args.learning_rate

    best_val_loss = 100
    best_val_data_loss = 100

    smallest_err_val = 100000
    smallest_err_val_data = 100000

    best_epoch_val = 0
    best_epoch_val_data = 0

    best_err_epoch_val = 0
    best_err_epoch_val_data = 0

    all_epoch_results = []
    grids = []
    num_batch = 0
    dataset_pointer_ins_grid = -1

    [grids.append([]) for dataset in range(dataloader.get_len_of_dataset())]

    # Training
    for epoch in range(args.num_epochs):
        print('****************Training epoch beginning******************')
        if dataloader.additional_validation and (epoch -
                                                 1) in validation_epoch_list:
            dataloader.switch_to_dataset_type(True)
        dataloader.reset_batch_pointer(valid=False)
        loss_epoch = 0

        # For each batch
        for batch in range(dataloader.num_batches):
            start = time.time()

            # Get batch data
            x, y, d, numPedsList, PedsList, target_ids = dataloader.next_batch(
            )

            loss_batch = 0

            # if we are in a new dataset, zero the counter of batch
            if dataset_pointer_ins_grid is not dataloader.dataset_pointer and epoch is not 0:
                num_batch = 0
                dataset_pointer_ins_grid = dataloader.dataset_pointer

            # For each sequence
            for sequence in range(dataloader.batch_size):
                # Get the data corresponding to the current sequence
                x_seq, _, d_seq, numPedsList_seq, PedsList_seq = x[
                    sequence], y[sequence], d[sequence], numPedsList[
                        sequence], PedsList[sequence]
                target_id = target_ids[sequence]

                # get processing file name and then get dimensions of file
                folder_name = dataloader.get_directory_name_with_pointer(d_seq)
                dataset_data = dataloader.get_dataset_dimension(
                    folder_name
                )  #dataloader.get_dataset_dimension(folder_name)
                # dense vector creation
                x_seq, lookup_seq = dataloader.convert_proper_array(
                    x_seq, numPedsList_seq, PedsList_seq)
                # print("LOOKUP SEQ   =    " ,lookup_seq)
                #print("TARGET_ID   =    " , target_id)
                target_id_values = x_seq[0][lookup_seq[target_id], 0:2]  #:2

                # Compute grid masks
                if (args.grid):
                    if (epoch is 0):
                        grid_seq = getSequenceGridMask(x_seq, dataset_data,
                                                       PedsList_seq,
                                                       args.neighborhood_size,
                                                       args.grid_size,
                                                       args.use_cuda, True)
                        grids[dataloader.dataset_pointer].append(grid_seq)
                    else:
                        grid_seq = grids[dataloader.dataset_pointer][
                            (num_batch * dataloader.batch_size) + sequence]
                else:
                    grid_seq = getSequenceGridMask(x_seq, dataset_data,
                                                   PedsList_seq,
                                                   args.neighborhood_size,
                                                   args.grid_size,
                                                   args.use_cuda, True)

                # vectorize trajectories in sequence
                x_seq, _ = vectorize_seq(x_seq, PedsList_seq, lookup_seq)

                if args.use_cuda:
                    x_seq = x_seq.cuda()

                # number of peds in this sequence per frame
                numNodes = len(lookup_seq)

                hidden_states = Variable(torch.zeros(numNodes, args.rnn_size))
                if args.use_cuda:
                    hidden_states = hidden_states.cuda()
                cell_states = Variable(torch.zeros(numNodes, args.rnn_size))
                if args.use_cuda:
                    cell_states = cell_states.cuda()

                # Zero out gradients
                net.zero_grad()
                optimizer.zero_grad()

                # Forward prop
                outputs, _, _ = net(x_seq, grid_seq, hidden_states,
                                    cell_states, PedsList_seq, numPedsList_seq,
                                    dataloader, lookup_seq)

                # Compute loss
                loss = Gaussian2DLikelihood(outputs, x_seq, PedsList_seq,
                                            lookup_seq)
                loss_batch += loss.item()

                # Compute gradients
                loss.backward()

                # Clip gradients
                torch.nn.utils.clip_grad_norm_(net.parameters(),
                                               args.grad_clip)

                # Update parameters
                optimizer.step()

            end = time.time()
            loss_batch = loss_batch / dataloader.batch_size
            loss_epoch += loss_batch
            num_batch += 1

            print('{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}'.
                  format(epoch * dataloader.num_batches + batch,
                         args.num_epochs * dataloader.num_batches, epoch,
                         loss_batch, end - start))

        loss_epoch /= dataloader.num_batches
        # Log loss values
        log_file_curve.write("Training epoch: " + str(epoch) + " loss: " +
                             str(loss_epoch) + '\n')

        if dataloader.valid_num_batches > 0:
            print(
                '****************Validation epoch beginning******************')

            # Validation
            dataloader.reset_batch_pointer(valid=True)
            loss_epoch = 0
            err_epoch = 0

            # For each batch
            for batch in range(dataloader.valid_num_batches):
                # Get batch data
                x, y, d, numPedsList, PedsList, target_ids = dataloader.next_valid_batch(
                )

                # Loss for this batch
                loss_batch = 0
                err_batch = 0

                # For each sequence
                for sequence in range(dataloader.batch_size):
                    # Get data corresponding to the current sequence
                    x_seq, _, d_seq, numPedsList_seq, PedsList_seq = x[
                        sequence], y[sequence], d[sequence], numPedsList[
                            sequence], PedsList[sequence]
                    target_id = target_ids[sequence]

                    # get processing file name and then get dimensions of file
                    folder_name = dataloader.get_directory_name_with_pointer(
                        d_seq)
                    dataset_data = dataloader.get_dataset_dimension(
                        folder_name)

                    # dense vector creation
                    x_seq, lookup_seq = dataloader.convert_proper_array(
                        x_seq, numPedsList_seq, PedsList_seq)
                    target_id_values = x_seq[0][lookup_seq[target_id], 0:2]

                    # Compute grid masks
                    if (args.grid):
                        if (epoch is 0):
                            grid_seq = getSequenceGridMask(
                                x_seq, dataset_data, PedsList_seq,
                                args.neighborhood_size, args.grid_size,
                                args.use_cuda, True)
                            grids[dataloader.dataset_pointer].append(grid_seq)
                        else:
                            grid_seq = grids[dataloader.dataset_pointer][
                                (num_batch * dataloader.batch_size) + sequence]
                    else:
                        grid_seq = getSequenceGridMask(x_seq, dataset_data,
                                                       PedsList_seq,
                                                       args.neighborhood_size,
                                                       args.grid_size,
                                                       args.use_cuda, True)

                    # vectorize trajectories in sequence
                    x_seq, _ = vectorize_seq(x_seq, PedsList_seq, lookup_seq)

                    if args.use_cuda:
                        x_seq = x_seq.cuda()

                    # number of peds in this sequence per frame
                    numNodes = len(lookup_seq)

                    hidden_states = Variable(
                        torch.zeros(numNodes, args.rnn_size))
                    if args.use_cuda:
                        hidden_states = hidden_states.cuda()
                    cell_states = Variable(torch.zeros(numNodes,
                                                       args.rnn_size))
                    if args.use_cuda:
                        cell_states = cell_states.cuda()

                    # Forward prop
                    outputs, _, _ = net(x_seq[:-1], grid_seq[:-1],
                                        hidden_states, cell_states,
                                        PedsList_seq[:-1], numPedsList_seq,
                                        dataloader, lookup_seq)

                    # Compute loss
                    loss = Gaussian2DLikelihood(outputs, x_seq[1:],
                                                PedsList_seq[1:], lookup_seq)

                    # Extract the mean, std and corr of the bivariate Gaussian
                    mux, muy, sx, sy, corr = getCoef(outputs)

                    # Sample from the bivariate Gaussian
                    next_x, next_y = sample_gaussian_2d(
                        mux.data, muy.data, sx.data, sy.data, corr.data,
                        PedsList_seq[-1], lookup_seq)
                    next_vals = torch.FloatTensor(1, numNodes, 2)
                    next_vals[:, :, 0] = next_x
                    next_vals[:, :, 1] = next_y
                    err = get_mean_error(next_vals, x_seq[-1].data[None, :, :],
                                         [PedsList_seq[-1]],
                                         [PedsList_seq[-1]], args.use_cuda,
                                         lookup_seq)

                    loss_batch += loss.item()
                    err_batch += err

                loss_batch = loss_batch / dataloader.batch_size
                err_batch = err_batch / dataloader.batch_size
                loss_epoch += loss_batch
                err_epoch += err_batch

            if dataloader.valid_num_batches != 0:
                loss_epoch = loss_epoch / dataloader.valid_num_batches
                err_epoch = err_epoch / dataloader.num_batches

                # Update best validation loss until now
                if loss_epoch < best_val_loss:
                    best_val_loss = loss_epoch
                    best_epoch_val = epoch

                if err_epoch < smallest_err_val:
                    smallest_err_val = err_epoch
                    best_err_epoch_val = epoch

                print('(epoch {}), valid_loss = {:.3f}, valid_err = {:.3f}'.
                      format(epoch, loss_epoch, err_epoch))
                print('Best epoch', best_epoch_val, 'Best validation loss',
                      best_val_loss, 'Best error epoch', best_err_epoch_val,
                      'Best error', smallest_err_val)
                log_file_curve.write("Validation epoch: " + str(epoch) +
                                     " loss: " + str(loss_epoch) + " err: " +
                                     str(err_epoch) + '\n')

        # Validation dataset
        if dataloader.additional_validation and (
                epoch) in validation_epoch_list:
            dataloader.switch_to_dataset_type()
            print(
                '****************Validation with dataset epoch beginning******************'
            )
            dataloader.reset_batch_pointer(valid=False)
            dataset_pointer_ins = dataloader.dataset_pointer
            validation_dataset_executed = True

            loss_epoch = 0
            err_epoch = 0
            f_err_epoch = 0
            num_of_batch = 0
            smallest_err = 100000

            # results of one epoch for all validation datasets
            epoch_result = []
            # results of one validation dataset
            results = []

            # For each batch
            for batch in range(dataloader.num_batches):
                # Get batch data
                x, y, d, numPedsList, PedsList, target_ids = dataloader.next_batch(
                )

                if dataset_pointer_ins is not dataloader.dataset_pointer:
                    if dataloader.dataset_pointer is not 0:
                        print('Finished prosessed file : ',
                              dataloader.get_file_name(-1),
                              ' Avarage error : ', err_epoch / num_of_batch)
                        num_of_batch = 0
                        epoch_result.append(results)

                    dataset_pointer_ins = dataloader.dataset_pointer
                    results = []

                # Loss for this batch
                loss_batch = 0
                err_batch = 0
                f_err_batch = 0

                # For each sequence
                for sequence in range(dataloader.batch_size):
                    # Get data corresponding to the current sequence
                    x_seq, _, d_seq, numPedsList_seq, PedsList_seq = x[
                        sequence], y[sequence], d[sequence], numPedsList[
                            sequence], PedsList[sequence]
                    target_id = target_ids[sequence]

                    # get processing file name and then get dimensions of file
                    folder_name = dataloader.get_directory_name_with_pointer(
                        d_seq)
                    dataset_data = dataloader.get_dataset_dimension(
                        folder_name)

                    # dense vector creation
                    x_seq, lookup_seq = dataloader.convert_proper_array(
                        x_seq, numPedsList_seq, PedsList_seq)

                    # will be used for error calculation
                    orig_x_seq = x_seq.clone()

                    target_id_values = orig_x_seq[0][lookup_seq[target_id],
                                                     0:2]

                    # grid mask calculation
                    grid_seq = getSequenceGridMask(x_seq, dataset_data,
                                                   PedsList_seq,
                                                   args.neighborhood_size,
                                                   args.grid_size,
                                                   args.use_cuda, True)

                    # vectorize datapoints
                    x_seq, first_values_dict = vectorize_seq(
                        x_seq, PedsList_seq, lookup_seq)

                    if args.use_cuda:
                        x_seq = x_seq.cuda()

                    # sample predicted points from model
                    ret_x_seq, loss = sample_validation_data(
                        x_seq, PedsList_seq, grid_seq, args, net, lookup_seq,
                        numPedsList_seq, dataloader)

                    # revert the points back to original space
                    ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq,
                                           first_values_dict)

                    # get mean and final error
                    err = get_mean_error(ret_x_seq.data, orig_x_seq.data,
                                         PedsList_seq, PedsList_seq,
                                         args.use_cuda, lookup_seq)
                    f_err = get_final_error(ret_x_seq.data, orig_x_seq.data,
                                            PedsList_seq, PedsList_seq,
                                            lookup_seq)

                    loss_batch += loss.item()
                    err_batch += err
                    f_err_batch += f_err
                    print('Current file : ', dataloader.get_file_name(0),
                          ' Batch : ', batch + 1, ' Sequence: ', sequence + 1,
                          ' Sequence mean error: ', err,
                          ' Sequence final error: ', f_err, ' time: ',
                          end - start)
                    results.append(
                        (orig_x_seq.data.cpu().numpy(),
                         ret_x_seq.data.cpu().numpy(), PedsList_seq,
                         lookup_seq,
                         dataloader.get_frame_sequence(args.seq_length),
                         target_id))

                loss_batch = loss_batch / dataloader.batch_size
                err_batch = err_batch / dataloader.batch_size
                f_err_batch = f_err_batch / dataloader.batch_size
                num_of_batch += 1
                loss_epoch += loss_batch
                err_epoch += err_batch
                f_err_epoch += f_err_batch

            epoch_result.append(results)
            all_epoch_results.append(epoch_result)

            if dataloader.num_batches != 0:
                loss_epoch = loss_epoch / dataloader.num_batches
                err_epoch = err_epoch / dataloader.num_batches
                f_err_epoch = f_err_epoch / dataloader.num_batches
                # Update best validation loss until now
                if loss_epoch < best_val_data_loss:
                    best_val_data_loss = loss_epoch
                    best_epoch_val_data = epoch

                if err_epoch < smallest_err_val_data:
                    smallest_err_val_data = err_epoch
                    best_err_epoch_val_data = epoch

                print(
                    '(epoch {}), valid_loss = {:.3f}, valid_mean_err = {:.3f}, valid_final_err = {:.3f}'
                    .format(epoch, loss_epoch, err_epoch, f_err_epoch))
                print('Best epoch', best_epoch_val_data,
                      'Best validation loss', best_val_data_loss,
                      'Best error epoch', best_err_epoch_val_data,
                      'Best error', smallest_err_val_data)
                log_file_curve.write("Validation dataset epoch: " +
                                     str(epoch) + " loss: " + str(loss_epoch) +
                                     " mean_err: " + str(err_epoch) +
                                     'final_err: ' + str(f_err_epoch) + '\n')

            optimizer = time_lr_scheduler(optimizer,
                                          epoch,
                                          lr_decay_epoch=args.freq_optimizer)

        # Save the model after each epoch
        print('Saving model')
        torch.save(
            {
                'epoch': epoch,
                'state_dict': net.state_dict(),
                'optimizer_state_dict': optimizer.state_dict()
            }, checkpoint_path(epoch))

    if dataloader.valid_num_batches != 0:
        print('Best epoch', best_epoch_val, 'Best validation Loss',
              best_val_loss, 'Best error epoch', best_err_epoch_val,
              'Best error', smallest_err_val)
        # Log the best epoch and best validation loss
        log_file.write('Validation Best epoch:' + str(best_epoch_val) + ',' +
                       ' Best validation Loss: ' + str(best_val_loss))

    if dataloader.additional_validation:
        print('Best epoch acording to validation dataset', best_epoch_val_data,
              'Best validation Loss', best_val_data_loss, 'Best error epoch',
              best_err_epoch_val_data, 'Best error', smallest_err_val_data)
        log_file.write("Validation dataset Best epoch: " +
                       str(best_epoch_val_data) + ',' +
                       ' Best validation Loss: ' + str(best_val_data_loss) +
                       '\n')
        # dataloader.write_to_plot_file(all_epoch_results[best_epoch_val_data], plot_directory)

    # elif dataloader.valid_num_batches != 0:
    #    dataloader.write_to_plot_file(all_epoch_results[best_epoch_val], plot_directory)

    # else:
    if validation_dataset_executed:  # if we executed a validation epoch, write last epoch file
        dataloader.switch_to_dataset_type(load_data=False)
        create_directories(plot_directory, [plot_train_file_directory])
        dataloader.write_to_plot_file(
            all_epoch_results[len(all_epoch_results) - 1],
            os.path.join(plot_directory, plot_train_file_directory))

    # Close logging files
    log_file.close()
    log_file_curve.close()
Exemple #18
0
def main(unused_argv):
    # Initialise learning rate
    eff_rate = FLAGS.learning_rate

    # extract the vocabulary from training sentendes
    with open("vocabulary.pickle", "rb") as f:
        vocabulary = pickle.load(f)

    # load training data
    if FLAGS.do_train:
        train_loader = DataLoader(FLAGS.train_file_path,
                                  vocabulary, do_shuffle=True)
        batches_train = train_loader.batch_iterator(FLAGS.num_epochs,
                                                    FLAGS.batch_size)

    # load validation data
    if FLAGS.do_eval:
        eval_loader = DataLoader(FLAGS.eval_file_path,
                                 vocabulary, do_shuffle=False)
        batches_eval = eval_loader.batch_iterator(num_epochs=1,
                                                  batch_size=1000)

    # Load continuation data
    if FLAGS.do_generate:
        gen_loader = DataLoader(FLAGS.generate_file_path,
                                vocabulary, do_shuffle=False, is_partial=True)
        batches_gen = gen_loader.batch_iterator(num_epochs=1, batch_size=1000)

    # Create the graph
    global_counter = tf.Variable(0, trainable=False)

    if FLAGS.task == "A":
        # For a) the embedding is a matrix to be learned from scratch
        embedding_matrix = tf.get_variable(
            name="embedding_matrix",
            shape=[FLAGS.vocab_size, FLAGS.embedding_size],
            dtype=tf.float32,
            initializer=tf.contrib.layers.xavier_initializer())
    else:
        # For simplicity we do not use the code given but use the given
        # embeddings directly.
        # TODO confirm that this is okay for the tutors.
        keys = []
        emb = []
        ext_emb = csv.reader(open(FLAGS.embedding), delimiter=' ')
        for line in ext_emb:
            keys += [line[0]]
            emb += [list(map(float, line[1:]))]
        given_emb = dict(zip(keys, emb))
        external_embedding = np.zeros(shape=(FLAGS.vocab_size,
                                             FLAGS.embedding_size))
        for k, v in vocabulary.get_vocabulary_as_dict().items():
            try:
                external_embedding[v, :] = given_emb[k]
            except KeyError:
                print("Unmatched: %s" % k)
                external_embedding[v, :] = \
                    np.random.uniform(low=-0.25,
                                      high=0.25,
                                      size=FLAGS.embedding_size)
        embedding_matrix = tf.Variable(external_embedding, dtype=tf.float32)
    input_words = tf.placeholder(tf.int32, [None, FLAGS.sentence_length])
    # add to collection for usage from restored model
    tf.add_to_collection("input_words", input_words)

    embedded_words = tf.nn.embedding_lookup(embedding_matrix, input_words)

    # RNN graph
    lstm = tf.contrib.rnn.BasicLSTMCell(FLAGS.lstm_size)
    # Somehow lstm has a touple of states instead of just one.
    # We learn sensible initial states as well.

    # The states seem to correspond to the LSTM cell state and the hidden layer output
    # see http://stackoverflow.com/questions/41789133/c-state-and-m-state-in-tensorflow-lstm
    # https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/LSTMStateTuple
    lstm_zero_c = \
        tf.get_variable("zero_state_c",
                        shape=[1, FLAGS.lstm_size],
                        dtype=tf.float32,
                        initializer=tf.contrib.layers.xavier_initializer())
    lstm_zero_h = \
        tf.get_variable("zero_state_h",
                        shape=[1, FLAGS.lstm_size],
                        dtype=tf.float32,
                        initializer=tf.contrib.layers.xavier_initializer())

    lstm_state = (tf.tile(lstm_zero_c, [tf.shape(input_words)[0], 1]),
                  tf.tile(lstm_zero_h, [tf.shape(input_words)[0], 1]))
    lstm_state_g = (tf.tile(lstm_zero_c, [tf.shape(input_words)[0], 1]),
                    tf.tile(lstm_zero_h, [tf.shape(input_words)[0], 1]))

    if not FLAGS.task == "C":
        out_to_logit_w = tf.get_variable(
            name="output_weights",
            shape=[FLAGS.lstm_size, FLAGS.vocab_size],
            dtype=tf.float32,
            initializer=tf.contrib.layers.xavier_initializer())
        out_to_logit_b = tf.get_variable("output_bias",
                                         shape=[FLAGS.vocab_size])
    else:
        inter_w = tf.get_variable("intermediate_weights",
                                  shape=[FLAGS.lstm_size,
                                         FLAGS.intermediate_size],
                                  dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
        inter_b = tf.get_variable("intermediate_biases",
                                  shape=[FLAGS.intermediate_size])

        out_to_logit_w = tf.get_variable(
            name="output_weights",
            shape=[FLAGS.intermediate_size, FLAGS.vocab_size],
            dtype=tf.float32,
            initializer=tf.contrib.layers.xavier_initializer())
        out_to_logit_b = tf.get_variable("output_bias",
                                         shape=[FLAGS.vocab_size])

    # initialize
    lstm_outputs = []
    # add summaries for tensorboard

    with tf.variable_scope("RNN"):
        for time_step in range(FLAGS.sentence_length):
            if time_step > 0:
                tf.get_variable_scope().reuse_variables()
            lstm_out, lstm_state = lstm(embedded_words[:, time_step, :],
                                        lstm_state)

            lstm_outputs.append(lstm_out)

    output = tf.concat(axis=0, values=lstm_outputs)

    if not FLAGS.task == "C":
        logits = tf.matmul(output, out_to_logit_w) + out_to_logit_b
        l2_loss = tf.nn.l2_loss(out_to_logit_w) * FLAGS.lambda_l2
    else:
        logits = tf.matmul(tf.matmul(output, inter_w) + inter_b,
                           out_to_logit_w) + out_to_logit_b
        l2_loss = (tf.nn.l2_loss(out_to_logit_w) + tf.nn.l2_loss(
            inter_w)) * FLAGS.lambda_l2

    logits_reshaped = tf.transpose(tf.reshape(logits,
                                              [FLAGS.sentence_length, -1,
                                               FLAGS.vocab_size]), [1, 0, 2])
    best_pred = tf.arg_max(logits_reshaped, 2)

    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        labels=input_words[:, 1:],
        logits=logits_reshaped[:, :-1, :]) / np.log(2) * \
           tf.to_float(tf.not_equal(input_words[:, 1:],
                                    vocabulary.dict[vocabulary.PADDING]))

    # Sanity check
    any_word = input_words[10, 5]
    any_word_pre = input_words[10, 4]
    any_word_probs = tf.nn.softmax(logits_reshaped[10, 5, :])
    any_word_max_prob = tf.reduce_max(any_word_probs)
    any_word_prediction = tf.argmax(any_word_probs, dimension=0)
    any_word_real_perp = 1 / any_word_probs[any_word]

    any_word_probs2 = tf.nn.softmax(logits_reshaped[11, 6, :])
    any_word_prediction2 = tf.argmax(any_word_probs2, dimension=0)

    # output of the last layer in the unrolled LSTM
    last_output = lstm_outputs[-1]
    last_prob = tf.nn.softmax(logits_reshaped[:, -1, :])

    # add to collection for re-use in task 1.2
    tf.add_to_collection("last_output", last_output)
    tf.add_to_collection("last_prob", last_prob)
    tf.summary.histogram("last_prob", last_prob)

    # define perplexity and add to collection to provide access when reloading the model elsewhere
    # add a summary scalar for tensorboard
    # TODO Confirm that the elementwise crossentropy is -p(w_t|w_1,...,w_{t-1})
    mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(
        tf.to_float(tf.not_equal(input_words[:, 1:],
                                 vocabulary.dict[vocabulary.PADDING]))) + l2_loss
    tf.summary.scalar('loss', mean_loss)
    perplexity = tf.pow(2.0, mean_loss)
    tf.add_to_collection("perplexity", perplexity)
    tf.summary.scalar('perplexity', perplexity)

    nominator = tf.reduce_sum(loss, axis=1)
    denominator =  tf.reduce_sum(tf.to_float(
            tf.not_equal(input_words[:, 1:],
                         vocabulary.dict[vocabulary.PADDING])), axis=1)

    sentence_perplexity = \
        tf.pow(2.0, tf.reduce_sum(loss, axis=1) / tf.reduce_sum(tf.to_float(
            tf.not_equal(input_words[:, 1:],
                         vocabulary.dict[vocabulary.PADDING])), axis=1))
    tf.summary.histogram('sPerplexity', sentence_perplexity)

    # TODO add learning_rate to summaries
    optimiser = tf.train.AdamOptimizer(FLAGS.learning_rate)

    gradients, v = zip(*optimiser.compute_gradients(mean_loss))
    # TODO from the doc it looks as if we actually wanted to set use_norm to 10 instead. Confirm!
    # https://www.tensorflow.org/api_docs/python/tf/clip_by_global_norm
    clipped_gradients, _ = tf.clip_by_global_norm(gradients, 10)
    train_op = optimiser.apply_gradients(zip(clipped_gradients, v),
                                         global_step=global_counter)

    # initialize the Variables
    init_op = tf.global_variables_initializer()
    # Saver to save model checkpoints
    saver = tf.train.Saver(max_to_keep=FLAGS.num_checkpoints,
                           keep_checkpoint_every_n_hours=2)

    # Get an idea of the overall size of the model
    total_parameters = 0
    for variable in tf.trainable_variables():
        shape = variable.get_shape()
        print(shape)
        variable_parametes = 1
        for dim in shape:
            variable_parametes *= dim.value
        total_parameters += variable_parametes
    print("Built a graph with a total of %d trainable parameters" % (
        total_parameters))

    merged_summaries = tf.summary.merge_all()

    # loop over training batches
    if FLAGS.do_train:
        with tf.Session() as sess:
            # Summary Filewriter
            train_summary_dir = os.path.join(FLAGS.model_dir, "summary",
                                             "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir,
                                                         sess.graph)

            # Restoring or initialising session
            if not FLAGS.force_init:
                try:
                    saver.restore(sess,
                                  tf.train.latest_checkpoint(FLAGS.model_dir))
                    print("Recovered Session")
                except:  # TODO find name for this exception (it does not accept the NotFoundError displayed if it does not find the save)
                    sess.run(init_op)
                    print("Unexpectedly initialised session")
            else:
                sess.run(init_op)
                print("Initialised session")

            print("Start training")
            for data_train in batches_train:
                gc_ = 0
                if (gc_ % FLAGS.evaluate_every) == 0 or gc_ == 1:
                    ms_, gc_, pp_, last_out_, last_prob_, _, \
                    word, max_p, pred, perp_of_true, word2, word_pre = \
                        sess.run([merged_summaries, global_counter, perplexity,
                                  last_output, last_prob, train_op,
                                  any_word, any_word_max_prob, any_word_prediction,
                                  any_word_real_perp, any_word_prediction2,
                                  any_word_pre],
                                 feed_dict={input_words: data_train})
                else:
                    _, gc_ = sess.run([train_op, global_counter],
                             feed_dict={input_words: data_train})

                if gc_ > FLAGS.no_output_before_n:
                    train_summary_writer.add_summary(ms_, gc_)

                if (gc_ % FLAGS.evaluate_every) == 0 or gc_ == 1:
                    print("Iteration %s: Perplexity is %s" % (gc_, pp_))

                if (gc_ % FLAGS.checkpoint_every == 0) and gc_ > 0:
                    ckpt_path = saver.save(sess, os.path.join(FLAGS.model_dir,
                                                              'model'), gc_)
                    print("Model saved in file: %s" % ckpt_path)
                if gc_ % FLAGS.hlave_lr_every == 0 & gc_ > 0:
                    eff_rate /= 2
                    print("Adjusted learning rate")
                    print(eff_rate)

                if gc_ % 250 == 0:
                    print(
                        "Target: %s, Perplexity of target: %s,  "
                        "max prob: %s, predicted: %s, second_word: %s,"
                        "Previous word: %s" % (word, perp_of_true,
                                                         max_p, pred, word2,
                                               word_pre))

    if FLAGS.do_eval:
        with tf.Session() as sess:
            # Restoring or initialising session
            saver.restore(sess,
                          tf.train.latest_checkpoint(FLAGS.model_dir))
            print("Recovered Session")
            out_pp = np.empty(0)
            for data_eval in batches_eval:
                out_pp = np.concatenate((out_pp, sess.run(sentence_perplexity,
                                                          feed_dict={
                                                              input_words: data_eval})))
            np.savetxt(
                FLAGS.output_dir + "/group25.perplexity" + FLAGS.task,
                np.array(out_pp),
                fmt="%4.8f",
                delimiter=',')

    if FLAGS.do_generate:
        with tf.Session() as sess:
            # Restoring or initialising session
            saver.restore(sess,
                          tf.train.latest_checkpoint(FLAGS.model_dir))
            print("Recovered Session")
            sentences = []
            for data_gen in batches_gen:
                input = data_gen
                for t in range(FLAGS.sentence_length - 1):
                    best = sess.run(best_pred, feed_dict={input_words: input})

                    if t < (FLAGS.sentence_length - 1):
                        next_available = data_gen[:, t+1] != vocabulary.dict[vocabulary.PADDING]
                        input[:, t + 1] = next_available * data_gen[:, t+1] + \
                                          (1-next_available) * best[:, t]

                sentences.append(input)

        translator = vocabulary.get_inverse_voc_dict()
        sentence_together = np.vstack(sentences)
        out_sentences = np.array([translator[x] for x in sentence_together.reshape([-1])]).reshape([-1, FLAGS.sentence_length])

        tt = clean_and_cut_sentences(out_sentences)

        np.savetxt(
            FLAGS.output_dir + "/group25.continuation" + FLAGS.task,
            np.array(tt),
            fmt="%s",
            delimiter='\n')
def main():
    parser = argparse.ArgumentParser()
    # Model to be loaded
    parser.add_argument('--epoch',
                        type=int,
                        default=15,
                        help='Epoch of model to be loaded')

    parser.add_argument('--seq_length',
                        type=int,
                        default=20,
                        help='RNN sequence length')

    parser.add_argument('--use_cuda',
                        action="store_true",
                        default=False,
                        help='Use GPU or not')

    parser.add_argument('--drive',
                        action="store_true",
                        default=False,
                        help='Use Google drive or not')
    # Size of neighborhood to be considered parameter
    parser.add_argument(
        '--neighborhood_size',
        type=int,
        default=32,
        help='Neighborhood size to be considered for social grid')
    # Size of the social grid parameter
    parser.add_argument('--grid_size',
                        type=int,
                        default=4,
                        help='Grid size of the social grid')
    # number of validation will be used
    parser.add_argument(
        '--num_validation',
        type=int,
        default=5,
        help='Total number of validation dataset will be visualized')
    # gru support
    parser.add_argument('--gru',
                        action="store_true",
                        default=False,
                        help='True : GRU cell, False: LSTM cell')
    # method selection
    parser.add_argument(
        '--method',
        type=int,
        default=1,
        help=
        'Method of lstm will be used (1 = social lstm, 2 = obstacle lstm, 3 = vanilla lstm)'
    )

    # Parse the parameters
    sample_args = parser.parse_args()

    # for drive run
    prefix = ''
    f_prefix = '.'
    if sample_args.drive is True:
        prefix = 'drive/semester_project/social_lstm_final/'
        f_prefix = 'drive/semester_project/social_lstm_final'

    method_name = get_method_name(sample_args.method)
    model_name = "LSTM"
    save_tar_name = method_name + "_lstm_model_"
    if sample_args.gru:
        model_name = "GRU"
        save_tar_name = method_name + "_gru_model_"

    # Save directory
    save_directory = os.path.join(f_prefix, 'model/', method_name, model_name)

    # plot directory for plotting in the future
    plot_directory = os.path.join(f_prefix, 'plot/', method_name, model_name)

    plot_validation_file_directory = 'validation'

    # Define the path for the config file for saved args
    with open(os.path.join(save_directory, 'config.pkl'), 'rb') as f:
        saved_args = pickle.load(f)

    origin = (0, 0)
    reference_point = (0, 1)
    net = get_model(sample_args.method, saved_args, True)
    if sample_args.use_cuda:
        net = net.cuda()

    # Get the checkpoint path
    checkpoint_path = os.path.join(
        save_directory, save_tar_name + str(sample_args.epoch) + '.tar')
    if os.path.isfile(checkpoint_path):
        print('Loading checkpoint')
        checkpoint = torch.load(checkpoint_path)
        model_epoch = checkpoint['epoch']
        net.load_state_dict(checkpoint['state_dict'])
        print('Loaded checkpoint at epoch', model_epoch)

    # Create the DataLoader object
    dataloader = DataLoader(f_prefix,
                            1,
                            sample_args.seq_length,
                            num_of_validation=sample_args.num_validation,
                            forcePreProcess=True,
                            infer=True)
    create_directories(plot_directory, [plot_validation_file_directory])
    dataloader.reset_batch_pointer()

    print(
        '****************Validation dataset batch processing******************'
    )
    dataloader.reset_batch_pointer(valid=False)
    dataset_pointer_ins = dataloader.dataset_pointer

    loss_epoch = 0
    err_epoch = 0
    f_err_epoch = 0
    num_of_batch = 0
    smallest_err = 100000

    # results of one epoch for all validation datasets
    epoch_result = []
    # results of one validation dataset
    results = []

    # For each batch
    for batch in range(dataloader.num_batches):
        start = time.time()
        # Get batch data
        x, y, d, numPedsList, PedsList, target_ids = dataloader.next_batch()

        if dataset_pointer_ins is not dataloader.dataset_pointer:
            if dataloader.dataset_pointer is not 0:
                print('Finished prosessed file : ',
                      dataloader.get_file_name(-1), ' Avarage error : ',
                      err_epoch / num_of_batch)
                num_of_batch = 0
                epoch_result.append(results)

            dataset_pointer_ins = dataloader.dataset_pointer
            results = []

        # Loss for this batch
        loss_batch = 0
        err_batch = 0
        f_err_batch = 0

        # For each sequence
        for sequence in range(dataloader.batch_size):
            # Get data corresponding to the current sequence
            x_seq, _, d_seq, numPedsList_seq, PedsList_seq = x[sequence], y[
                sequence], d[sequence], numPedsList[sequence], PedsList[
                    sequence]
            target_id = target_ids[sequence]

            folder_name = dataloader.get_directory_name_with_pointer(d_seq)
            dataset_data = dataloader.get_dataset_dimension(folder_name)

            # dense vector creation
            x_seq, lookup_seq = dataloader.convert_proper_array(
                x_seq, numPedsList_seq, PedsList_seq)

            # will be used for error calculation
            orig_x_seq = x_seq.clone()

            target_id_values = x_seq[0][lookup_seq[target_id], 0:2]

            # grid mask calculation
            if sample_args.method == 2:  # obstacle lstm
                grid_seq = getSequenceGridMask(x_seq, dataset_data,
                                               PedsList_seq,
                                               saved_args.neighborhood_size,
                                               saved_args.grid_size,
                                               saved_args.use_cuda, True)
            elif sample_args.method == 1:  # social lstm
                grid_seq = getSequenceGridMask(x_seq, dataset_data,
                                               PedsList_seq,
                                               saved_args.neighborhood_size,
                                               saved_args.grid_size,
                                               saved_args.use_cuda)

            # vectorize datapoints
            x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq,
                                                     lookup_seq)

            # <---------------- Experimental block (may need update in methods)----------------------->
            # x_seq = translate(x_seq, PedsList_seq, lookup_seq ,target_id_values)
            # angle = angle_between(reference_point, (x_seq[1][lookup_seq[target_id], 0].data.numpy(), x_seq[1][lookup_seq[target_id], 1].data.numpy()))
            # x_seq = rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq)
            # # Compute grid masks
            # grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, sample_args.neighborhood_size, sample_args.grid_size, sample_args.use_cuda)
            # x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq)

            if sample_args.use_cuda:
                x_seq = x_seq.cuda()

            if sample_args.method == 3:  # vanilla lstm
                ret_x_seq, loss = sample_validation_data_vanilla(
                    x_seq, PedsList_seq, sample_args, net, lookup_seq,
                    numPedsList_seq, dataloader)

            else:
                ret_x_seq, loss = sample_validation_data(
                    x_seq, PedsList_seq, grid_seq, sample_args, net,
                    lookup_seq, numPedsList_seq, dataloader)

            # <---------------------Experimental inverse block -------------->
            # ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, target_id_values, first_values_dict)
            # ret_x_seq = rotate_traj_with_target_ped(ret_x_seq, -angle, PedsList_seq, lookup_seq)
            # ret_x_seq = translate(ret_x_seq, PedsList_seq, lookup_seq ,-target_id_values)
            # revert the points back to original space
            ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq,
                                   first_values_dict)

            err = get_mean_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq,
                                 PedsList_seq, sample_args.use_cuda,
                                 lookup_seq)
            f_err = get_final_error(ret_x_seq.data, orig_x_seq.data,
                                    PedsList_seq, PedsList_seq, lookup_seq)

            loss_batch += loss
            err_batch += err
            f_err_batch += f_err
            results.append(
                (orig_x_seq.data.cpu().numpy(), ret_x_seq.data.cpu().numpy(),
                 PedsList_seq, lookup_seq,
                 dataloader.get_frame_sequence(sample_args.seq_length),
                 target_id))

        end = time.time()
        print('Current file : ', dataloader.get_file_name(0), ' Batch : ',
              batch + 1, ' Sequence: ', sequence + 1, ' Sequence mean error: ',
              err, ' Sequence final error: ', f_err, ' time: ', end - start)
        loss_batch = loss_batch / dataloader.batch_size
        err_batch = err_batch / dataloader.batch_size
        f_err_batch = f_err_batch / dataloader.batch_size
        num_of_batch += 1
        loss_epoch += loss_batch.item()
        err_epoch += err_batch
        f_err_epoch += f_err_batch

    epoch_result.append(results)

    if dataloader.num_batches != 0:
        loss_epoch = loss_epoch / dataloader.num_batches
        err_epoch = err_epoch / dataloader.num_batches
        f_err_epoch = f_err_epoch / dataloader.num_batches
        print(
            'valid_loss = {:.3f}, valid_mean_err = {:.3f}, valid_final_err = {:.3f}'
            .format(loss_epoch, err_epoch, f_err_epoch))

    dataloader.write_to_plot_file(
        epoch_result,
        os.path.join(plot_directory, plot_validation_file_directory))
Exemple #20
0
sample_args = parser.parse_args()
'''KITTI Training Setting'''

save_directory = '/home/serene/Documents/KITTIData/GT/save/pixel_data/1'

with open(os.path.join(save_directory, 'config.pkl'), 'rb') as f:
    saved_args = pickle.load(f)

f = open('/home/serene/Documents/KITTIData/GT/save/pixel_data/1/results.pkl',
         'rb')
results = pickle.load(f)

dataset = [sample_args.visual_dataset]
data_loader = DataLoader(1,
                         sample_args.pred_length + sample_args.obs_length,
                         dataset,
                         True,
                         infer=True)
#print(data_loader.data[0][0].shape)

# for j in range(len(data_loader.data[0])):
#
#     sourceFileName = "/home/hesl/PycharmProjects/social-lstm-tf-HW/data/KITTI-17/img1/" + str(j + 1).zfill(6) + ".jpg"
#
#     avatar= cv2.imread(sourceFileName)
#     #drawAvatar= ImageDraw.Draw(avatar)
#     #print(avatar.shape)
#     xSize  = avatar.shape[1]
#     ySize = avatar.shape[0]
#     #print(data_loader.data[0][0][0])
#     for i in range(20):
Exemple #21
0
    optimizer = RMSprop(lr=0.003)

    model.compile(loss=negative_log_likelihood_sequences, optimizer=optimizer)
    yPadded = np.pad(y, ((0, 0), (0, 0), (0, 3)),
                     'constant',
                     constant_values=(0., 0.))  # the values is not important
    print('yPadded', yPadded.shape)
    history = model.fit(X, yPadded, batch_size=50, epochs=1, verbose=2)
    # model.save('many_to_many.h5')
    return history


seqLength = 20
obsLength = 8
predLength = 12
data_loader = DataLoader(seq_length=seqLength)  # , forcePreProcess=True)

trajectoriesTrain, trajectoriesTest = data_loader.get_data(test_dataset=4)
xA = np.array(trajectoriesTrain, dtype='float32')
print('training set shape', xA.shape)

X = xA[:, 0:obsLength, :]
y = xA[:, obsLength:seqLength, :]
xOneFrame = xA[:, 0, :]
yOneFrame = xA[:, obsLength, :]

hist = train_many2one(X, yOneFrame)
# hist = train_many2many(X, y)

import matplotlib.pyplot as plt
#print(hist.history['loss'])
Exemple #22
0
def train(args):
    print("INPUT SEQUENCE LENGTH: {}".format(args.seq_length))
    print("OUTPUT SEQUENCE LENGTH: {}".format(args.pred_length))
    # Construct the DataLoader object
    dataloader = DataLoader(args.batch_size,
                            args.seq_length + 1,
                            forcePreProcess=False)
    # Construct the ST-graph object
    stgraph = ST_GRAPH(1, args.seq_length + 1)

    # Log directory
    log_directory = "../log/"

    # Logging file
    log_file_curve = open(os.path.join(log_directory, "log_curve.txt"), "w")
    log_file = open(os.path.join(log_directory, "val.txt"), "w")

    # Save directory
    save_directory = "../../save_weight/"

    # Open the configuration file # 현재 argument 세팅 저장.
    with open(os.path.join(save_directory, "config.pkl"), "wb") as f:
        pickle.dump(args, f)

    # Path to store the checkpoint file
    def checkpoint_path(x):
        return os.path.join(save_directory, "4Dgraph.S-{}.P-{}.srnn_model_"\
                            .format(args.seq_length, args.pred_length)\
                            + str(x) + ".tar")

    # Initialize net
    net = SRNN(args)
    if args.use_cuda:
        net = net.cuda()

    optimizer = torch.optim.Adam(net.parameters(), weight_decay=1e-5)

    # learning_rate = args.learning_rate
    logging.info("Training begin")
    best_val_loss = 100
    best_epoch = 0
    # Training
    for epoch in range(args.num_epochs):
        dataloader.reset_batch_pointer(valid=False)  # Initialization
        loss_epoch = 0

        # For each batch
        # dataloader.num_batches = 10. 1 epoch have 10 batches
        for batch in range(dataloader.num_batches):
            start = time.time()
            # Get batch data, mini-batch
            x, _, _, d = dataloader.next_batch(randomUpdate=True)

            # Loss for this batch
            loss_batch = 0

            # For each sequence in the batch
            for sequence in range(
                    dataloader.batch_size):  #미니 배치에 있는 각 sequence 데이터에 대한 처리.
                # Construct the graph for the current sequence in {nodes, edges}
                stgraph.readGraph([x[sequence]])
                nodes, edges, nodesPresent, edgesPresent = stgraph.getSequence(
                )  #미니 배치에 있는 각 sequence의 graph 정보.

                ##### Convert to cuda variables #####
                nodes = Variable(torch.from_numpy(nodes).float())
                # nodes[0] represent all the person(object)'s corrdinate show up in frame 0.
                if args.use_cuda:
                    nodes = nodes.cuda()
                edges = Variable(torch.from_numpy(edges).float())
                if args.use_cuda:
                    edges = edges.cuda()

                # Define hidden states
                numNodes = nodes.size()[1]  #numNodes

                hidden_states_node_RNNs = Variable(
                    torch.zeros(numNodes, args.node_rnn_size))
                if args.use_cuda:
                    hidden_states_node_RNNs = hidden_states_node_RNNs.cuda()

                hidden_states_edge_RNNs = Variable(
                    torch.zeros(numNodes * numNodes, args.edge_rnn_size))
                if args.use_cuda:
                    hidden_states_edge_RNNs = hidden_states_edge_RNNs.cuda()

                cell_states_node_RNNs = Variable(
                    torch.zeros(numNodes, args.node_rnn_size))
                if args.use_cuda:
                    cell_states_node_RNNs = cell_states_node_RNNs.cuda()

                cell_states_edge_RNNs = Variable(
                    torch.zeros(numNodes * numNodes, args.edge_rnn_size))
                if args.use_cuda:
                    cell_states_edge_RNNs = cell_states_edge_RNNs.cuda()

                hidden_states_super_node_RNNs = Variable(  #NOTE: 0 for peds., 1 for Bic., 2 for Veh.
                    torch.zeros(3, args.node_rnn_size))
                if args.use_cuda:
                    hidden_states_super_node_RNNs = hidden_states_super_node_RNNs.cuda(
                    )

                cell_states_super_node_RNNs = Variable(
                    torch.zeros(3, args.node_rnn_size))
                if args.use_cuda:
                    cell_states_super_node_RNNs = cell_states_super_node_RNNs.cuda(
                    )

                hidden_states_super_node_Edge_RNNs = Variable(
                    torch.zeros(3, args.edge_rnn_size))
                if args.use_cuda:
                    hidden_states_super_node_Edge_RNNs = (
                        hidden_states_super_node_Edge_RNNs.cuda())

                cell_states_super_node_Edge_RNNs = Variable(
                    torch.zeros(3, args.edge_rnn_size))
                if args.use_cuda:
                    cell_states_super_node_Edge_RNNs = (
                        cell_states_super_node_Edge_RNNs.cuda())

                # Zero out the gradients // Initialization Step
                net.zero_grad()
                optimizer.zero_grad()

                # Forward prop
                outputs, _, _, _, _, _, _, _, _, _ = net(
                    nodes[:args.seq_length],
                    edges[:args.seq_length],
                    nodesPresent[:-1],
                    edgesPresent[:-1],
                    hidden_states_node_RNNs,
                    hidden_states_edge_RNNs,
                    cell_states_node_RNNs,
                    cell_states_edge_RNNs,
                    hidden_states_super_node_RNNs,
                    hidden_states_super_node_Edge_RNNs,
                    cell_states_super_node_RNNs,
                    cell_states_super_node_Edge_RNNs,
                )

                # Compute loss
                loss = Gaussian2DLikelihood(outputs, nodes[1:],
                                            nodesPresent[1:], args.pred_length)
                loss_batch += loss.item()
                # embed()
                # Compute gradients
                loss.backward()

                # Clip gradients
                torch.nn.utils.clip_grad_norm(net.parameters(), args.grad_clip)

                # Update parameters
                optimizer.step()

                # Reset the stgraph
                stgraph.reset()

            end = time.time()
            loss_batch = loss_batch / dataloader.batch_size  ##### NOTE: Expected Loss; E[L]
            loss_epoch += loss_batch

            logging.info(
                "{}/{} (epoch {}), train_loss = {:.12f}, time/batch = {:.12f}".
                format(
                    epoch * dataloader.num_batches + batch,
                    args.num_epochs * dataloader.num_batches,
                    epoch,
                    loss_batch,
                    end - start,
                ))
        # Compute loss for the entire epoch
        loss_epoch /= dataloader.num_batches
        # Log it
        log_file_curve.write(str(epoch) + "," + str(loss_epoch) + ",")

        #####################     Validation Part     #####################
        dataloader.reset_batch_pointer(valid=True)
        loss_epoch = 0

        for batch in range(dataloader.valid_num_batches):
            # Get batch data

            x, _, d = dataloader.next_valid_batch(randomUpdate=False)

            # Loss for this batch
            loss_batch = 0

            for sequence in range(dataloader.batch_size):
                stgraph.readGraph([x[sequence]])

                nodes, edges, nodesPresent, edgesPresent = stgraph.getSequence(
                )

                # Convert to cuda variables
                nodes = Variable(torch.from_numpy(nodes).float())
                if args.use_cuda:
                    nodes = nodes.cuda()
                edges = Variable(torch.from_numpy(edges).float())
                if args.use_cuda:
                    edges = edges.cuda()

                # Define hidden states
                numNodes = nodes.size()[1]

                hidden_states_node_RNNs = Variable(
                    torch.zeros(numNodes, args.node_rnn_size))
                if args.use_cuda:
                    hidden_states_node_RNNs = hidden_states_node_RNNs.cuda()

                hidden_states_edge_RNNs = Variable(
                    torch.zeros(numNodes * numNodes, args.edge_rnn_size))
                if args.use_cuda:
                    hidden_states_edge_RNNs = hidden_states_edge_RNNs.cuda()
                cell_states_node_RNNs = Variable(
                    torch.zeros(numNodes, args.node_rnn_size))
                if args.use_cuda:
                    cell_states_node_RNNs = cell_states_node_RNNs.cuda()
                cell_states_edge_RNNs = Variable(
                    torch.zeros(numNodes * numNodes, args.edge_rnn_size))
                if args.use_cuda:
                    cell_states_edge_RNNs = cell_states_edge_RNNs.cuda()

                hidden_states_super_node_RNNs = Variable(
                    torch.zeros(3, args.node_rnn_size))
                if args.use_cuda:
                    hidden_states_super_node_RNNs = hidden_states_super_node_RNNs.cuda(
                    )

                cell_states_super_node_RNNs = Variable(
                    torch.zeros(3, args.node_rnn_size))
                if args.use_cuda:
                    cell_states_super_node_RNNs = cell_states_super_node_RNNs.cuda(
                    )

                hidden_states_super_node_Edge_RNNs = Variable(
                    torch.zeros(3, args.edge_rnn_size))
                if args.use_cuda:
                    hidden_states_super_node_Edge_RNNs = (
                        hidden_states_super_node_Edge_RNNs.cuda())

                cell_states_super_node_Edge_RNNs = Variable(
                    torch.zeros(3, args.edge_rnn_size))
                if args.use_cuda:
                    cell_states_super_node_Edge_RNNs = (
                        cell_states_super_node_Edge_RNNs.cuda())

                outputs, _, _, _, _, _, _, _, _, _ = net(
                    nodes[:args.seq_length],
                    edges[:args.seq_length],
                    nodesPresent[:-1],
                    edgesPresent[:-1],
                    hidden_states_node_RNNs,
                    hidden_states_edge_RNNs,
                    cell_states_node_RNNs,
                    cell_states_edge_RNNs,
                    hidden_states_super_node_RNNs,
                    hidden_states_super_node_Edge_RNNs,
                    cell_states_super_node_RNNs,
                    cell_states_super_node_Edge_RNNs,
                )

                # Compute loss
                loss = Gaussian2DLikelihood(outputs, nodes[1:],
                                            nodesPresent[1:], args.pred_length)

                loss_batch += loss.item()

                # Reset the stgraph
                stgraph.reset()

            loss_batch = loss_batch / dataloader.batch_size  #### NOTE: Expected Loss; E[L]
            loss_epoch += loss_batch

        loss_epoch = loss_epoch / dataloader.valid_num_batches

        # Update best validation loss until now
        if loss_epoch < best_val_loss:
            best_val_loss = loss_epoch
            best_epoch = epoch

        # Record best epoch and best validation loss
        logging.info("(epoch {}), valid_loss = {:.3f}".format(
            epoch, loss_epoch))
        logging.info("Best epoch {}, Best validation loss {}".format(
            best_epoch, best_val_loss))
        # Log it
        log_file_curve.write(str(loss_epoch) + "\n")

        # Save the model after each epoch
        logging.info("Saving model")
        torch.save(
            {
                "epoch": epoch,
                "state_dict": net.state_dict(),
                "optimizer_state_dict": optimizer.state_dict(),
            },
            checkpoint_path(epoch),
        )

    # Record the best epoch and best validation loss overall
    logging.info("Best epoch {}, Best validation loss {}".format(
        best_epoch, best_val_loss))
    # Log it
    log_file.write(str(best_epoch) + "," + str(best_val_loss))

    # Close logging files
    log_file.close()
    log_file_curve.close()
def train(args):
    data_loader = DataLoader(args.batch_size, args.seq_length, args.data_scale)

    if args.model_dir != '' and not os.path.exists(args.model_dir):
        os.makedirs(args.model_dir)

    with open(os.path.join(args.model_dir, 'config.pkl'), 'wb') as f:
        pickle.dump(args, f)

    model = Model(args)

    with tf.Session() as sess:
        summary_writer = tf.summary.FileWriter(
            os.path.join(args.model_dir, 'log'), sess.graph)

        tf.global_variables_initializer().run()
        saver = tf.train.Saver(tf.global_variables(), max_to_keep=0)
        for e in range(args.num_epochs):
            sess.run(
                tf.assign(model.lr, args.learning_rate * (args.decay_rate**e)))
            data_loader.reset_batch_pointer()
            v_x, v_y = data_loader.validation_data()
            valid_feed = {
                model.input_data: v_x,
                model.target_data: v_y,
                model.state_in: model.state_in.eval()
            }
            state = model.state_in.eval()
            for b in range(data_loader.num_batches):
                ith_train_step = e * data_loader.num_batches + b
                start = time.time()
                x, y = data_loader.next_batch()
                feed = {
                    model.input_data: x,
                    model.target_data: y,
                    model.state_in: state
                }
                train_loss_summary, train_loss, state, _ = sess.run([
                    model.train_loss_summary, model.cost, model.state_out,
                    model.train_op
                ], feed)
                summary_writer.add_summary(train_loss_summary, ith_train_step)

                valid_loss_summary, valid_loss, = sess.run(
                    [model.valid_loss_summary, model.cost], valid_feed)
                summary_writer.add_summary(valid_loss_summary, ith_train_step)

                end = time.time()
                print(
                    "{}/{} (epoch {}), train_loss = {:.3f}, valid_loss = {:.3f}, time/batch = {:.3f}"
                    .format(ith_train_step,
                            args.num_epochs * data_loader.num_batches, e,
                            train_loss, valid_loss, end - start))
                if (ith_train_step % args.save_every
                        == 0) and (ith_train_step > 0):
                    checkpoint_path = os.path.join(args.model_dir,
                                                   'model.ckpt')
                    saver.save(sess,
                               checkpoint_path,
                               global_step=ith_train_step)
                    print("model saved to {}".format(checkpoint_path))
Exemple #24
0
def main():
    # Define the parser
    parser = argparse.ArgumentParser()
    # Observed length of the trajectory parameter
    parser.add_argument('--obs_length',
                        type=int,
                        default=5,
                        help='Observed length of the trajectory')
    # Predicted length of the trajectory parameter
    parser.add_argument('--pred_length',
                        type=int,
                        default=5,
                        help='Predicted length of the trajectory')
    # Test dataset
    parser.add_argument('--test_dataset',
                        type=int,
                        default=3,
                        help='Dataset to be tested on')

    # Read the arguments
    sample_args = parser.parse_args()
    sample_args.train_logs = os.path.join('..', 'train_logs', 'lstm')

    # Load the saved arguments to the model from the config file
    with open(os.path.join(sample_args.train_logs, 'save', 'config.pkl'),
              'rb') as f:
        saved_args = pickle.load(f)

    # Initialize with the saved args
    model = Model(saved_args, True)
    # Initialize TensorFlow session
    sess = tf.InteractiveSession()
    # Initialize TensorFlow saver
    saver = tf.train.Saver()

    # Get the checkpoint state to load the model from
    ckpt = tf.train.get_checkpoint_state(
        os.path.join(sample_args.train_logs, 'model'))
    print('loading model: ', ckpt.model_checkpoint_path)

    # Restore the model at the checpoint
    saver.restore(sess, ckpt.model_checkpoint_path)

    # Dataset to get data from
    dataset = [sample_args.test_dataset]

    # Initialize the dataloader object to
    # Get sequences of length obs_length+pred_length
    data_loader = DataLoader(1,
                             sample_args.pred_length + sample_args.obs_length,
                             dataset, True)

    # Reset the data pointers of the data loader object
    data_loader.reset_batch_pointer()

    # Maintain the total_error until now
    total_error = 0.
    counter = 0.
    for b in range(data_loader.num_batches):
        # Get the source, target data for the next batch
        x, y = data_loader.next_batch()

        # The observed part of the trajectory
        obs_traj = x[0][:sample_args.obs_length]
        # Get the complete trajectory with both the observed and the predicted part from the model
        complete_traj = model.sample(sess,
                                     obs_traj,
                                     x[0],
                                     num=sample_args.pred_length)

        # Compute the mean error between the predicted part and the true trajectory
        total_error += get_mean_error(complete_traj, x[0],
                                      sample_args.obs_length)
        print("Processed trajectory number : ", b, "out of ",
              data_loader.num_batches, " trajectories")

    # Print the mean error across all the batches
    print("Total mean error of the model is ",
          total_error / data_loader.num_batches)
Exemple #25
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

import experiments.Hybird_tVAE_test as T
import utils.DataLoader as D
import utils.Utils as U
from models.Hybird_tVAE import Hybird_tVAE

flags = tf.app.flags

# data_loader
data_loader = D.DataLoader(D.Vocab('europarl_hybird_tvae', D.Level.CHAR))
# ptb_loader = D.DataLoader(D.Vocab('ptb_hybird_tvae', D.Level.CHAR))

# hybird_tvae config
flags.DEFINE_string('model_name', 'Hybird_tVAE', '')
flags.DEFINE_string('ckpt_path', './results/Hybird_tVAE/ckpt/', '')
flags.DEFINE_string('logs_path', './results/Hybird_tVAE/logs/', '')

flags.DEFINE_integer('batch_size', 32, '')
flags.DEFINE_integer('steps', U.epoch_to_step(10, data_loader.train_size, batch_size=32), '')
flags.DEFINE_integer('lr', 0.001, 'learning rate')
flags.DEFINE_integer('z_size', 32, '')
flags.DEFINE_integer('seq_len', 60, '')
flags.DEFINE_integer('rnn_num', 1, '')
flags.DEFINE_integer('embed_size', 80, '')
flags.DEFINE_integer('vocab_size', data_loader.vocab_size, '')
def main():
    '''
    主要目的為 計算測試資料的 error rate
    '''
    parser = argparse.ArgumentParser()
    # Observed length of the trajectory parameter
    parser.add_argument('--obs_length',
                        type=int,
                        default=180,
                        help='Observed length of the trajectory')
    # Predicted length of the trajectory parameter
    # parser.add_argument('--pred_length', type=int, default=378-60-1,
    #                     help='Predicted length of the trajectory')

    parser.add_argument('--pred_length',
                        type=int,
                        default=240,
                        help='Predicted length of the trajectory')
    # Model to be loaded
    parser.add_argument('--epoch',
                        type=int,
                        default=199,
                        help='Epoch of model to be loaded')
    # cuda support
    parser.add_argument('--use_cuda',
                        action="store_true",
                        default=False,
                        help='Use GPU or not')

    # gru model
    parser.add_argument('--gru',
                        action="store_true",
                        default=False,
                        help='True : GRU cell, False: LSTM cell')
    # method selection
    parser.add_argument(
        '--method',
        type=int,
        default=1,
        help=
        'Method of lstm will be used (1 = social lstm, 2 = obstacle lstm, 3 = vanilla lstm)'
    )

    # Parse the parameters
    sample_args = parser.parse_args()

    # for drive run
    prefix = ''
    f_prefix = '.'

    method_name = "OLSTM"
    model_name = "LSTM"
    save_tar_name = method_name + "_lstm_model_"
    if sample_args.gru:
        model_name = "GRU"
        save_tar_name = method_name + "_gru_model_"

    print("Selected method name: ", method_name, " model name: ", model_name)

    # Save directory
    save_directory = os.path.join(f_prefix, 'model/', method_name, model_name)
    # plot directory for plotting in the future
    plot_directory = os.path.join(f_prefix, 'plot/', method_name, model_name)

    result_directory = os.path.join(f_prefix, 'result/', method_name)
    plot_test_file_directory = 'test'

    # Define the path for the config file for saved args
    with open(os.path.join(save_directory, 'config.pkl'), 'rb') as f:
        saved_args = pickle.load(f)

    seq_lenght = sample_args.pred_length + sample_args.obs_length

    # Create the DataLoader object
    dataloader = DataLoader(f_prefix,
                            1,
                            sample_args.pred_length + sample_args.obs_length,
                            forcePreProcess=True,
                            infer=True)
    create_directories(os.path.join(result_directory, model_name),
                       dataloader.get_all_directory_namelist())
    create_directories(plot_directory, [plot_test_file_directory])
    dataloader.reset_batch_pointer(valid=False)

    dataset_pointer_ins = dataloader.dataset_pointer

    smallest_err = 100000
    smallest_err_iter_num = -1
    origin = (0, 0)
    reference_point = (0, 1)

    submission_store = []  # store submission data points (txt)
    result_store = []  # store points for plotting

    # Initialize net
    net = OLSTM(saved_args, True)

    if sample_args.use_cuda:
        net = net.cuda()

    # Get the checkpoint path
    checkpoint_path = os.path.join(
        save_directory, save_tar_name + str(sample_args.epoch) + '.tar')
    if os.path.isfile(checkpoint_path):
        print('Loading checkpoint')
        checkpoint = torch.load(checkpoint_path)
        model_epoch = checkpoint['epoch']
        net.load_state_dict(checkpoint['state_dict'])
        print('Loaded checkpoint at epoch', model_epoch)

    results_it = []
    for iterator in range(50):
        x_seq_arr = []
        ret_x_seq_arr = []
        error_arr = []
        expected_day_arr = []
        predicted_day_arr = []

        total_error = 0

        for batch in range(dataloader.num_batches):
            # Get data
            x, y, d = dataloader.next_batch(randomUpdate=False)

            # Get the sequence
            x_seq, y_seq, d_seq = x[0], y[0], d[0]
            x_seq = np.array(x_seq)
            '''
            x_seq = dataloader.inverse_transform_MinMaxScaler(x_seq)
            print('{}/{}'.format(batch, dataloader.num_batches))
            x_seq[sample_args.obs_length:,-2]= 17
            x_seq[sample_args.obs_length:,-1]= 28
            x_seq = dataloader.fit_transform_MinMaxScaler(x_seq)
            '''
            x_seq = Variable(torch.from_numpy(x_seq).float())

            if sample_args.use_cuda:
                x_seq = x_seq.cuda()

            obs_data = x_seq[:sample_args.obs_length]

            ret_x_seq = sample(sample_args, x_seq, net)

            error = get_mean_error(x_seq[sample_args.obs_length:],
                                   ret_x_seq[sample_args.obs_length:], False)
            total_error += error

            # 顯示預測
            # x_seq = result[0]
            x_seq = x_seq.data.cpu().numpy()
            x_seq = np.reshape(x_seq, (x_seq.shape[0], saved_args.input_size))
            x_seq = dataloader.inverse_transform_MinMaxScaler(x_seq)
            # ret_x_seq = result[1]
            ret_x_seq = ret_x_seq.data.cpu().numpy()
            ret_x_seq = np.reshape(ret_x_seq,
                                   (ret_x_seq.shape[0], saved_args.input_size))
            ret_x_seq = dataloader.inverse_transform_MinMaxScaler(ret_x_seq)

            gt = (x_seq[:, 0] - x_seq[:, 2]) / (x_seq[:, 1] - x_seq[:, 0])
            pred = (ret_x_seq[:, 0] - ret_x_seq[:, 2]) / (ret_x_seq[:, 1] -
                                                          ret_x_seq[:, 0])

            gt2 = gt[sample_args.obs_length:]
            pred2 = pred[sample_args.obs_length:]
            expected_day = np.mean(gt2)
            predicted_day = np.mean(pred2)
            # print(expected_day, predicted_day, expected_day-predicted_day)
            # print('Error: ',error)

            expected_day = np.mean(gt2)
            predicted_day = np.mean(pred2)

            x_seq_arr.append(x_seq)
            ret_x_seq_arr.append(ret_x_seq)
            error_arr.append(error.data.cpu().numpy())
            expected_day_arr.append(expected_day)
            predicted_day_arr.append(predicted_day)

            # fig, axs = plt.subplots(6, 1)
            # axs[0].plot(ret_x_seq[:,0], color = 'blue' , label = 'Predict h1', linestyle='--', marker='^')
            # axs[0].plot(x_seq[:,0], color = 'red', label = 'Real h1', linestyle='-', marker='.')
            # axs[1].plot(ret_x_seq[:,1], color = 'blue' , label = 'Predict h2', linestyle='--', marker='^')
            # axs[1].plot(x_seq[:,1], color = 'red', label = 'Real h2', linestyle='-', marker='.')
            # axs[2].plot(ret_x_seq[:,2], color = 'blue' , label = 'Predict h3', linestyle='--', marker='^')
            # axs[2].plot(x_seq[:,2], color = 'red', label = 'Real h3', linestyle='-', marker='.')
            # axs[3].plot(pred, color = 'blue' , label = 'Predict h3', linestyle='--', marker='^')
            # axs[3].plot(gt, color = 'red', label = 'Real h3', linestyle='-', marker='.')

            # axs[4].plot(ret_x_seq[:,-2], color = 'blue' , label = 'Predict Tevwi', linestyle='--', marker='^')
            # axs[4].plot(x_seq[:,-2], color = 'red', label = 'Real Tevwi', linestyle='-', marker='.')

            # axs[5].plot(ret_x_seq[:,-1], color = 'blue' , label = 'Predict Tcdwi', linestyle='--', marker='^')
            # axs[5].plot(x_seq[:,-1], color = 'red', label = 'Real Tcdwi', linestyle='-', marker='.')

            # for ax in axs:
            #     ax.legend()
            #     ax.grid()
            # plt.show()

        total_error = total_error / dataloader.num_batches
        if total_error < smallest_err:
            print("**********************************************************")
            print('Best iteration has been changed. Previous best iteration: ',
                  smallest_err_iter_num, 'Error: ', smallest_err)
            print('New best iteration : ', iterator, 'Error: ', total_error)
            smallest_err_iter_num = iterator
            smallest_err = total_error

        results_it.append((sample_args.pred_length, sample_args.obs_length,
                           x_seq_arr, ret_x_seq_arr, error_arr))

    dataloader.write_to_plot_file([results_it[smallest_err_iter_num]],
                                  os.path.join(plot_directory,
                                               plot_test_file_directory))
Exemple #27
0
alpha_num = const.ALPHA_NUM
lam_lp = const.LAM_LP
lam_gdl = const.LAM_GDL
lam_adv = const.LAM_ADV
lam_flow = const.LAM_FLOW
adversarial = (lam_adv != 0)

summary_dir = const.SUMMARY_DIR
snapshot_dir = const.SNAPSHOT_DIR

print(const)

# define dataset
with tf.name_scope('dataset'):
    train_loader = DataLoader(train_folder,
                              resize_height=height,
                              resize_width=width)
    train_dataset = train_loader(batch_size=batch_size,
                                 time_steps=num_his,
                                 num_pred=1)

    train_it = train_dataset.make_one_shot_iterator()
    train_videos_clips_tensor = train_it.get_next()
    train_videos_clips_tensor.set_shape(
        [batch_size, height, width, 3 * (num_his + 1)])

    train_inputs = train_videos_clips_tensor[..., 0:num_his * 3]
    train_gt = train_videos_clips_tensor[..., -3:]

    print('train inputs = {}'.format(train_inputs))
    print('train prediction gt = {}'.format(train_gt))
Exemple #28
0
    model.add(Reshape((-1, 3)))

    model.summary()

    return model


if __name__ == '__main__':

    train_size = 1054 * 5
    valid_size = 1186 * 5
    batch_size = 72
    epochs = 100

    train_loader = DataLoader(
        file_glob_pattern='no_compensate_feature/*.train.*.npy',
        batch_size=batch_size)
    valid_loader = DataLoader(
        file_glob_pattern='no_compensate_feature/*.valid.*.npy',
        batch_size=batch_size)
    model_ckpt = ModelCheckpoint('model/no_compensate.deconv.model.keras.h5',
                                 verbose=1,
                                 save_best_only=True)
    tensorboard = TensorBoard(log_dir='./logs/deconv_no_compensate',
                              histogram_freq=0,
                              write_graph=True,
                              write_images=False)

    model = build_model()
    # model.compile(loss = 'categorical_crossentropy', optimizer = Adam(lr = 1e-4), metrics = ['accuracy'])
    # history = model.fit_generator(train_loader, steps_per_epoch = train_size // batch_size, epochs = epochs, validation_data = valid_loader, validation_steps = valid_size // batch_size
"""
In these experiments we will try logistic regression, svms, ridge, decision trees, naive bayes and random forests classifiers across a wide variety of parameters for each algorithm and test them via nested cross validation method.
"""

from utils import DataLoader, nested_cross_val
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression, RidgeClassifier
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
from sklearn.model_selection import KFold, GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import make_scorer, confusion_matrix, f1_score, accuracy_score, precision_score, recall_score

dl = DataLoader('data/Ethos_Dataset_Binary.csv')
X, y = dl.get_data()
f = open("res/setA.txt", "w+")
f.write("{: <7} | {: <7} {: <7} {: <7} {: <7} {: <7} {: <7} {: <7} {: <7} \n".
        format('Method', 'Duration', 'scoreTi', 'F1', 'Prec.', 'Recall',
               'Acc.', 'Spec.', 'Sens.'))
f.write(
    "=========================================================================\n"
)
f.close()
"""""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """
                            Run Naive Bayes
""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """""" """"""
mNB = MultinomialNB()
vec = TfidfVectorizer(analyzer='word')
pipe = Pipeline(steps=[('vec', vec), ('mNB', mNB)])
Exemple #30
0
def train(args):
    ## 19th Feb : move training files for 3 && 4 to fine_obstacle under copy_2

    # os.chdir('/home/serene/PycharmProjects/srnn-pytorch-master/')
    # context_factor is an experiment for including potential destinations of pedestrians in the graph.
    # did not yield good improvement
    os.chdir('/home/serene/Documents/copy_srnn_pytorch/srnn-pytorch-master')
    # os.chdir('/home/siri0005/srnn-pytorch-master')
    # base_dir = '../fine_obstacle/prelu/p_02/'

    base_dir =  '../fine_obstacle/prelu/p_02/'
        # '../MultiNodeAttn_HH/'
    # os.chdir('/home/serene/Documents/KITTIData/GT')

    datasets = [i for i in [0,1,2,3,4]]
    # Remove the leave out dataset from the datasets
    datasets.remove(args.leaveDataset)
    # datasets = [0]
    # args.leaveDataset = 0

    # Construct the DataLoader object
    dataloader = DataLoader(args.batch_size, args.seq_length + 1, datasets, forcePreProcess=True)

    # Construct the ST-graph object
    stgraph = ST_GRAPH(1, args.seq_length + 1)

    # Log directory
    # log_directory = './log/world_data/normalized_01/'
    log_directory = base_dir+'log/'
    log_directory += str(args.leaveDataset) + '/'
    log_directory += 'log_attention/'

    # Logging file
    log_file_curve = open(os.path.join(log_directory, 'log_curve.txt'), 'w')
    log_file = open(os.path.join(log_directory, 'val.txt'), 'w')

    # Save directory
    # save_directory = './save/world_data/normalized_01/'
    save_directory = base_dir+'save/'
    save_directory += str(args.leaveDataset)+'/'
    save_directory += 'save_attention/'

    # log RELU parameter
    param_log_dir = save_directory + 'param_log.txt'
    param_log = open(param_log_dir , 'w')

    # Open the configuration file
    with open(os.path.join(save_directory, 'config.pkl'), 'wb') as f:
        pickle.dump(args, f)

    # Path to store the checkpoint file
    def checkpoint_path(x):
        return os.path.join(save_directory, 'srnn_model_'+str(x)+'.tar')

    # Initialize net
    net = SRNN(args)
    # srnn_model = SRNN(args)

    # net = torch.nn.DataParallel(srnn_model)

    # CUDA_VISIBLE_DEVICES = 1
    net.cuda()

    optimizer = torch.optim.Adam(net.parameters(), lr=args.learning_rate)
    # optimizer = torch.optim.RMSprop(net.parameters(), lr=args.learning_rate, momentum=0.0001, centered=True)

    # learning_rate = args.learning_rate
    print('Training begin')
    best_val_loss = 100
    best_epoch = 0
    # start_epoch = 0

    # if args.leaveDataset == 3:
    # start_epoch =checkpoint_path(0)

    # ckp = torch.load(checkpoint_path(3))
    # net.load_state_dict(ckp['state_dict'])
    # optimizer.load_state_dict(ckp['optimizer_state_dict'])

    # ckp = torch.load(checkpoint_path(4))
    # net.load_state_dict(ckp['state_dict'])
    # optimizer.load_state_dict(ckp['optimizer_state_dict'])
    # last_epoch = ckp['epoch']
    # rang = range(last_epoch, args.num_epochs, 1)
    rang = range(args.num_epochs)

    # Training
    for epoch in rang:
        dataloader.reset_batch_pointer(valid=False)
        loss_epoch = 0
        # if args.leaveDataset == 2 and epoch == 0:
        #     dataloader.num_batches = dataloader.num_batches + start_epoch
        #     epoch += start_epoch

        # For each batch

        stateful = True  # flag that controls transmission of previous hidden states to current hidden states vectors.
        # Part of statefulness

        for batch in range( dataloader.num_batches):
            start = time.time()

            # Get batch data
            x, _, _, d = dataloader.next_batch(randomUpdate=True) ## shuffling input + stateless lstm

            # Loss for this batch
            loss_batch = 0

            # For each sequence in the batch
            for sequence in range(dataloader.batch_size):
                # Construct the graph for the current sequence
                stgraph.readGraph([x[sequence]],d, args.distance_thresh)

                nodes, edges, nodesPresent, edgesPresent,obsNodes, obsEdges, obsNodesPresent, obsEdgesPresent = stgraph.getSequence() #

                # Convert to cuda variables
                nodes = Variable(torch.from_numpy(nodes).float()).cuda()
                edges = Variable(torch.from_numpy(edges).float()).cuda()

                obsNodes = Variable(torch.from_numpy(obsNodes).float()).cuda()
                obsEdges = Variable(torch.from_numpy(obsEdges).float()).cuda()

                ## Modification : reset hidden and cell states only once after every batch ; keeping states updated during sequences 31st JAN

                # Define hidden states
                numNodes = nodes.size()[1]
                numObsNodes = obsNodes.size()[1]

                # if not stateful:
                hidden_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size)).cuda()
                hidden_states_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_human_edge_rnn_size)).cuda()

                cell_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size)).cuda()
                cell_states_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_human_edge_rnn_size)).cuda()

                ## new update : 25th JAN , let the hidden state transition begin with negative ones
                ## such initialization did not lead to any new learning results, network converged quickly and loss did not decrease below
                # -6
                hidden_states_obs_node_RNNs = Variable(torch.zeros(numObsNodes, args.obs_node_rnn_size)).cuda()
                hidden_states_obs_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_obstacle_edge_rnn_size)).cuda()

                cell_states_obs_node_RNNs = Variable(torch.zeros(numObsNodes, args.obs_node_rnn_size)).cuda()
                cell_states_obs_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_obstacle_edge_rnn_size)).cuda()
                net.zero_grad()
                optimizer.zero_grad()

                # Forward prop
                #  _ = \
                outputs, h_node_rnn, h_edge_rnn, cell_node_rnn, cell_edge_rnn,o_h_node_rnn, o_h_edge_rnn, o_cell_node_rnn, o_cell_edge_rnn, _ = \
                    net(nodes[:args.seq_length], edges[:args.seq_length], nodesPresent[:-1], edgesPresent[:-1],
                    hidden_states_node_RNNs, hidden_states_edge_RNNs, cell_states_node_RNNs, cell_states_edge_RNNs,
                    obsNodes[:args.seq_length], obsEdges[:args.seq_length], obsNodesPresent[:-1],
                    obsEdgesPresent[:-1]
                        ,hidden_states_obs_node_RNNs, hidden_states_obs_edge_RNNs, cell_states_obs_node_RNNs,
                    cell_states_obs_edge_RNNs)

                # # else:
                # #     if len(nodes) == len(hidden_states_node_RNNs): # no additional nodes introduced in graph
                # #         hidden_states_node_RNNs = Variable(h_node_rnn).cuda()
                # #         cell_states_node_RNNs = Variable(cell_node_rnn).cuda()
                # #     else: # for now number of nodes is only increasing in time as new pedestrians are detected in the scene
                # #         pad_size = len(nodes) - len(hidden_states_node_RNNs)
                #         cell_states_node_RNNs = Variable(np.pad(cell_node_rnn, pad_size)).cuda()
                # if sequence > 0:
                #     hidden_states_node_RNNs = Variable(h_node_rnn).resize(hidden_states_node_RNNs.cpu().size())
                #     hidden_states_edge_RNNs = h_edge_rnn
                #     cell_states_node_RNNs = cell_node_rnn
                #     cell_states_edge_RNNs = cell_edge_rnn
                    # new_num_nodes = h_node_rnn.size()[0] - hidden_states_node_RNNs.size()[0]
                    # if h_node_rnn.size()[0] - hidden_states_node_RNNs.size()[0] >=1:
                    #     np.pad(hidden_states_node_RNNs.cpu() , new_num_nodes, mode='constant').cuda()

                    # hidden_states_obs_node_RNNs = o_h_node_rnn
                    # hidden_states_obs_edge_RNNs = o_h_edge_rnn
                    # cell_states_obs_node_RNNs = o_cell_node_rnn
                    # cell_states_obs_edge_RNNs = o_cell_edge_rnn

                # Zero out the gradients

                # Compute loss
                loss = Gaussian2DLikelihood(outputs, nodes[1:], nodesPresent[1:], args.pred_length)
                loss_batch += loss.data[0]
                # Compute gradients
                loss.backward(retain_variables=True)
                param_log.write(str(net.alpha.data[0]) + '\n')

                # Clip gradients
                torch.nn.utils.clip_grad_norm(net.parameters(), args.grad_clip)

                # Update parameters
                optimizer.step()

                # Reset the stgraph
                stgraph.reset()

            end = time.time()
            loss_batch = loss_batch / dataloader.batch_size
            loss_epoch += loss_batch

            print(
                '{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}'.format(epoch * dataloader.num_batches + batch,
                                                                                    args.num_epochs * dataloader.num_batches,
                                                                                    epoch,
                                                                                    loss_batch, end - start))

        # Compute loss for the entire epoch
        loss_epoch /= dataloader.num_batches
        # Log it
        log_file_curve.write(str(epoch)+','+str(loss_epoch)+',')

        # Validation
        dataloader.reset_batch_pointer(valid=True)
        loss_epoch = 0
        # dataloader.valid_num_batches = dataloader.valid_num_batches + start_epoch
        for batch in range(dataloader.valid_num_batches):
            # Get batch data
            x, _, d = dataloader.next_valid_batch(randomUpdate=False)## stateless lstm without shuffling

            # Loss for this batch
            loss_batch = 0

            for sequence in range(dataloader.batch_size):
                stgraph.readGraph([x[sequence]], d, args.distance_thresh)

                nodes, edges, nodesPresent, edgesPresent,obsNodes, obsEdges, obsNodesPresent, obsEdgesPresent = stgraph.getSequence() #

                # Convert to cuda variables
                nodes = Variable(torch.from_numpy(nodes).float()).cuda()
                edges = Variable(torch.from_numpy(edges).float()).cuda()

                obsNodes = Variable(torch.from_numpy(obsNodes).float()).cuda()
                obsEdges = Variable(torch.from_numpy(obsEdges).float()).cuda()

                # Define hidden states
                numNodes = nodes.size()[1]
                hidden_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size)).cuda()
                hidden_states_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_human_edge_rnn_size)).cuda()
                cell_states_node_RNNs = Variable(torch.zeros(numNodes, args.human_node_rnn_size)).cuda()
                cell_states_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_human_edge_rnn_size)).cuda()

                numObsNodes = obsNodes.size()[1]
                hidden_states_obs_node_RNNs = Variable(torch.zeros(numObsNodes, args.obs_node_rnn_size)).cuda()
                hidden_states_obs_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_obstacle_edge_rnn_size)).cuda()

                cell_states_obs_node_RNNs = Variable(torch.zeros(numObsNodes, args.obs_node_rnn_size)).cuda()
                cell_states_obs_edge_RNNs = Variable(torch.zeros(numNodes * numNodes, args.human_obstacle_edge_rnn_size)).cuda()
                #

                outputs,  h_node_rnn, h_edge_rnn, cell_node_rnn, cell_edge_rnn,o_h_node_rnn ,o_h_edge_rnn, o_cell_node_rnn, o_cell_edge_rnn,  _= net(nodes[:args.seq_length], edges[:args.seq_length], nodesPresent[:-1],
                                             edgesPresent[:-1], hidden_states_node_RNNs, hidden_states_edge_RNNs,
                                             cell_states_node_RNNs, cell_states_edge_RNNs
                                             , obsNodes[:args.seq_length], obsEdges[:args.seq_length],
                                             obsNodesPresent[:-1], obsEdgesPresent[:-1]
                                             ,hidden_states_obs_node_RNNs, hidden_states_obs_edge_RNNs,
                                             cell_states_obs_node_RNNs, cell_states_obs_edge_RNNs)

                # Compute loss
                loss = Gaussian2DLikelihood(outputs, nodes[1:], nodesPresent[1:], args.pred_length)

                loss_batch += loss.data[0]

                # Reset the stgraph
                stgraph.reset()

            loss_batch = loss_batch / dataloader.batch_size
            loss_epoch += loss_batch

        loss_epoch = loss_epoch / dataloader.valid_num_batches

        # Update best validation loss until now
        if loss_epoch < best_val_loss:
            best_val_loss = loss_epoch
            best_epoch = epoch

        # Record best epoch and best validation loss
        print('(epoch {}), valid_loss = {:.3f}'.format(epoch, loss_epoch))
        print('Best epoch {}, Best validation loss {}'.format(best_epoch, best_val_loss))
        # Log it
        log_file_curve.write(str(loss_epoch) + '\n')
        # Save the model after each epoch

        print('Saving model')
        torch.save({
            'epoch': epoch,
            'state_dict': net.state_dict(),
            'optimizer_state_dict': optimizer.state_dict()
        }, checkpoint_path(epoch))

    # Record the best epoch and best validation loss overall
    print('Best epoch {}, Best validation loss {}'.format(best_epoch, best_val_loss))
    # Log it
    log_file.write(str(best_epoch) + ',' + str(best_val_loss))

    # Close logging files
    log_file.close()
    log_file_curve.close()
    param_log.close()
Exemple #31
0
def main():
    # os.chdir('/home/serene/Documents/KITTIData/GT/')
    # os.chdir('/home/siri0005/copy_srnn_pytorch/srnn-pytorch-master/')#/srnn-pytorch-master

    os.chdir('/home/serene/Documents/copy_srnn_pytorch/srnn-pytorch-master')
    H_path = ['./pedestrians/ewap_dataset/seq_eth/H.txt',
              './pedestrians/ewap_dataset/seq_hotel/H.txt',
              './pedestrians/ucy_crowd/data_zara01/H.txt',
              './pedestrians/ucy_crowd/data_zara02/H.txt',
              './pedestrians/ucy_crowd/data_students03/H.txt']

    # ,1,2,3,
    base_dir = '../fine_obstacle/prelu/p_02/'
    for i in [4]:#,1,2,3,4
        avg = []
        ade = []
        with open(base_dir+'log/{0}/log_attention/val.txt'.format(i)) as val_f:
            if i == 1:
                e = 99
            else:
                best_val = val_f.readline()
                [e, val] = best_val.split(',')

        parser = argparse.ArgumentParser()
        # Observed length of the trajectory parameter
        parser.add_argument('--obs_length', type=int, default=8,
                            help='Observed length of the trajectory')
        # Predicted length of the trajectory parameter
        parser.add_argument('--pred_length', type=int, default=12,
                            help='Predicted length of the trajectory')
        # Test dataset
        parser.add_argument('--test_dataset', type=int, default=i,
                            help='Dataset to be tested on')

        # Model to be loaded
        parser.add_argument('--epoch', type=int, default=e,
                            help='Epoch of model to be loaded')

        # Parse the parameters
        sample_args = parser.parse_args()

        # Save directory
        save_directory = base_dir+'save/{0}/save_attention'.format(i)
        plot_directory = base_dir +  '/selected_plots/' #'plot_1/'
     

        # Define the path for the config file for saved args
        with open(os.path.join(save_directory, 'config.pkl'), 'rb') as f:
            saved_args = pickle.load(f)

        # Initialize net
        net = SRNN(saved_args, sample_args.test_dataset, True)
        net.cuda()

        ## TODO: visualize trained weights
        # plt.imshow(net.humanNodeRNN.edge_embed.weight)
        # plt.colorbar()
        # plt.show()
        checkpoint_path = os.path.join(save_directory, 'srnn_model_'+str(sample_args.epoch)+'.tar')

        if os.path.isfile(checkpoint_path):
            print('Loading checkpoint')
            checkpoint = torch.load(checkpoint_path)
            # model_iteration = checkpoint['iteration']
            model_epoch = checkpoint['epoch']
            net.load_state_dict(checkpoint['state_dict'])
            print('Loaded checkpoint at {}'.format(model_epoch))

        H_mat = np.loadtxt(H_path[i])

        avg = []
        ade = []
        # Dataset to get data from
        dataset = [sample_args.test_dataset]
        sample_ade_error_arr = []
        sample_fde_error_arr = []
        num_nodes = 0
        inner_num_nodes_1= 0
        inner_num_nodes_2= 0
        ade_sum = 0
        fde_sum = 0

        dataloader = DataLoader(1, sample_args.pred_length + sample_args.obs_length, dataset, True, infer=True)

        dataloader.reset_batch_pointer()

        # Construct the ST-graph object
        stgraph = ST_GRAPH(1, sample_args.pred_length + sample_args.obs_length)

        results = []

        # Variable to maintain total error
        total_error = 0
        final_error = 0
    
        # TRY this code version
        for batch in range(dataloader.num_batches):
            sample_fde_error = []
            sample_ade_error = []
            running_time_sample = []
            c = 0
            x, _, frameIDs, d = dataloader.next_batch(randomUpdate=False)

            # Construct ST graph
            stgraph.readGraph(x, ds_ptr=d, threshold=1.0)

            nodes, edges, nodesPresent, edgesPresent, obsNodes, obsEdges, obsNodesPresent, obsEdgesPresent = stgraph.getSequence()
            nodes = Variable(torch.from_numpy(nodes).float(), volatile=True).cuda()
            edges = Variable(torch.from_numpy(edges).float(), volatile=True).cuda()

            obsNodes = Variable(torch.from_numpy(obsNodes).float()).cuda()
            obsEdges = Variable(torch.from_numpy(obsEdges).float()).cuda()

            # Separate out the observed part of the trajectory
            obs_nodes, obs_edges, obs_nodesPresent, obs_edgesPresent = nodes[:sample_args.obs_length], edges[:sample_args.obs_length], nodesPresent[:sample_args.obs_length], edgesPresent[:sample_args.obs_length]
            # Separate out the observed obstacles in a given sequence
            obsnodes_v, obsEdges_v, obsNodesPresent_v, obsEdgesPresent_v = obsNodes[:sample_args.obs_length], obsEdges[:sample_args.obs_length], obsNodesPresent[:sample_args.obs_length], obsEdgesPresent[:sample_args.obs_length]

            # if c == 0:
            # num_nodes += np.shape(nodes)[1]

            for c in range(10):
                num_nodes += np.shape(nodes)[1]
                start = time.time()
                # Sample function
                ret_nodes, ret_attn = sample(obs_nodes, obs_edges, obs_nodesPresent, obs_edgesPresent, obsnodes_v,
                                             obsEdges_v, obsNodesPresent_v,obsEdgesPresent_v, sample_args, net, nodes, edges, nodesPresent)
                end = time.time()
                running_time_sample.append((end-start))
                # print('One-time Sampling took = ', (end - start), ' seconds.')

                # Compute mean and final displacement error
                total_error , _ = get_mean_error(ret_nodes[sample_args.obs_length:].data, nodes[sample_args.obs_length:].data,
                                              nodesPresent[sample_args.obs_length - 1],
                                              nodesPresent[sample_args.obs_length:], H_mat, i)

                # print("ADE errors:", total_error)
                inner_num_nodes_1 += _
                sample_ade_error.append(total_error)
                

                final_error , _ = get_final_error(ret_nodes[sample_args.obs_length:].data, nodes[sample_args.obs_length:].data,
                                               nodesPresent[sample_args.obs_length - 1],
                                               nodesPresent[sample_args.obs_length:], H_mat, i)
                

                # print("final errors:", final_error)

                sample_fde_error.append(final_error)
               
                results.append((nodes.data.cpu().numpy(), ret_nodes.data.cpu().numpy(), nodesPresent, sample_args.obs_length, ret_attn, frameIDs))
       
                stgraph.reset()
            

            sample_ade_error_arr.append(np.sum(sample_ade_error))
            sample_fde_error_arr.append(np.sum(sample_fde_error))

            sample_ade_error = np.sum(sample_ade_error, 0)
        
            if len(sample_ade_error):
                # sample_ade_error /= 10
                sample_ade_error = torch.min(sample_ade_error)
                ade_sum += sample_ade_error
                ade.append(ade_sum) 
      
            # for non-rectangular tensors
            for (e, idx) in zip(sample_fde_error , range(len(sample_fde_error))):
                if int(len(e)) > 0 :
                    l = int(len(e))
                    sample_fde_error[idx] = np.sum(e) #/l
                else:
                    del sample_fde_error[idx]

      
            print(sample_fde_error)
            if (np.ndim(sample_fde_error) == 1 and len(sample_fde_error)) or \
                (np.ndim(sample_fde_error) > 1 and np.all([True for x in sample_fde_error if len(x) > 0] == True)):
       
                sample_fde_error = np.min(sample_fde_error)
                fde_sum += sample_fde_error
                avg.append(fde_sum)

            with open(os.path.join(save_directory, 'results.pkl'), 'wb') as f:
                pickle.dump(results, f)

        print('SUMMARY **************************//')

        print('One-time Sampling took = ', np.average(running_time_sample), ' seconds.')
        print(np.sum(ade) , '   ' , np.sum(avg))
        print('average ADE', np.sum(ade) / (sample_args.pred_length * num_nodes))#
        print('average FDE', np.sum(avg) / (num_nodes*10))#
       
        with open(os.path.join(save_directory, 'sampling_results.txt'), 'wb') as o:
            np.savetxt(os.path.join(save_directory, 'sampling_results.txt'), (np.sum(ade) / (sample_args.pred_length * num_nodes),
                        np.sum(avg) / inner_num_nodes_1))
Exemple #32
0
class DCGAN():
    def __init__(self):
        # Input shape
        self.channels = 3
        self.img_size = 64
        self.latent_dim = 100
        self.time = time()
        self.dataset_name = 'vdsr'
        self.learning_rate = 1e-4

        optimizer = Adam(self.learning_rate, beta_1=0.5, decay=0.00005)

        self.gf = 64  # filter size of generator's last layer
        self.df = 64  # filter size of discriminator's first layer

        # Configure data loader
        self.data_loader = DataLoader(dataset_name=self.dataset_name,
                                      img_res=(self.img_size, self.img_size),
                                      mem_load=True)
        self.n_data = self.data_loader.get_n_data()

        self.generator = self.build_generator()
        print(
            "---------------------generator summary----------------------------"
        )
        self.generator.summary()

        self.generator.compile(loss='mse',
                               optimizer=optimizer,
                               metrics=['mse'])

        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        print(
            "\n---------------------discriminator summary----------------------------"
        )
        self.discriminator.summary()

        self.discriminator.compile(loss='mse',
                                   optimizer=optimizer,
                                   metrics=['accuracy'])

        make_trainable(self.discriminator, False)

        z = Input(shape=(self.latent_dim, ))
        fake_img = self.generator(z)

        # for the combined model, we only train ganerator
        self.discriminator.trainable = False

        validity = self.discriminator(fake_img)

        self.combined = Model([z], [validity])
        print(
            "\n---------------------combined summary----------------------------"
        )
        self.combined.summary()
        self.combined.compile(loss=['binary_crossentropy'],
                              optimizer=optimizer)

    def build_generator(self):
        noise = Input(shape=(self.latent_dim, ))

        def deconv2d(layer_input,
                     filters=256,
                     kernel_size=(5, 5),
                     strides=(2, 2),
                     bn_relu=True):
            """Layers used during upsampling"""
            # u = UpSampling2D(size=2)(layer_input)
            u = Conv2DTranspose(filters,
                                kernel_size=kernel_size,
                                strides=strides,
                                padding='same')(layer_input)
            if bn_relu:
                u = BatchNormalization(momentum=0.9)(u)
                u = Activation('relu')(u)
            return u

        generator = Dense(16 * self.gf * self.img_size // 16 * self.img_size //
                          16,
                          activation="relu")(noise)
        generator = Reshape((self.img_size // 16, self.img_size // 16,
                             self.gf * 16))(generator)
        generator = BatchNormalization()(generator)
        generator = Activation('relu')(generator)
        generator = deconv2d(generator, filters=self.gf * 8)
        generator = deconv2d(generator, filters=self.gf * 4)
        generator = deconv2d(generator, filters=self.gf * 2)
        generator = deconv2d(generator, filters=self.gf)
        generator = deconv2d(generator,
                             filters=self.channels,
                             kernel_size=(3, 3),
                             strides=(1, 1),
                             bn_relu=False)

        gen_img = Activation('tanh')(generator)

        return Model(noise, gen_img)

    def build_discriminator(self):
        def d_block(layer_input, filters, strides=1, bn=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=3, strides=strides,
                       padding='same')(layer_input)
            if bn:
                d = BatchNormalization(momentum=0.9)(d)
            d = LeakyReLU(alpha=0.2)(d)

            return d

        # Input img = generated image
        d0 = Input(shape=(self.img_size, self.img_size, self.channels))

        d = d_block(d0, self.df, strides=2, bn=False)
        d = d_block(d, self.df * 2, strides=2)
        d = d_block(d, self.df * 4, strides=2)
        d = d_block(d, self.df * 8, strides=2)

        d = Flatten()(d)
        validity = Dense(1, activation='sigmoid')(d)

        return Model(d0, validity)

    def train(self, epochs, batch_size, sample_interval):
        def named_logs(model, logs):
            result = {}
            for l in zip(model.metrics_names, logs):
                result[l[0]] = l[1]
            return result

        start_time = datetime.datetime.now()

        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))

        max_iter = int(self.n_data / batch_size)
        os.makedirs('./logs/%s' % self.time, exist_ok=True)
        tensorboard = TensorBoard('./logs/%s' % self.time)
        tensorboard.set_model(self.generator)

        os.makedirs('models/%s' % self.time, exist_ok=True)
        with open('models/%s/%s_architecture.json' % (self.time, 'generator'),
                  'w') as f:
            f.write(self.generator.to_json())
        print(
            "\nbatch size : %d | num_data : %d | max iteration : %d | time : %s \n"
            % (batch_size, self.n_data, max_iter, self.time))
        for epoch in range(1, epochs + 1):
            for iter in range(max_iter):
                # ------------------
                #  Train Generator
                # ------------------
                ref_imgs = self.data_loader.load_data(batch_size)

                noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
                gen_imgs = self.generator.predict(noise)
                make_trainable(self.discriminator, True)
                d_loss_real = self.discriminator.train_on_batch(
                    ref_imgs, valid * 0.9)  # label smoothing
                d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
                d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

                make_trainable(self.discriminator, False)

                logs = self.combined.train_on_batch([noise], [valid])
                tensorboard.on_epoch_end(iter,
                                         named_logs(self.combined, [logs]))

                if iter % (sample_interval // 10) == 0:
                    elapsed_time = datetime.datetime.now() - start_time
                    print(
                        "epoch:%d | iter : %d / %d | time : %10s | g_loss : %15s | d_loss : %s "
                        % (epoch, iter, max_iter, elapsed_time, logs, d_loss))

                if (iter + 1) % sample_interval == 0:
                    self.sample_images(epoch, iter + 1)

            # save weights after every epoch
            self.generator.save_weights('models/%s/%s_epoch%d_weights.h5' %
                                        (self.time, 'generator', epoch))

    def sample_images(self, epoch, iter):
        os.makedirs('samples/%s' % self.time, exist_ok=True)
        r, c = 5, 5
        noise = np.random.normal(0, 1, (r * c, self.latent_dim))
        gen_img = self.generator.predict(noise)

        # Rescale images 0 - 1
        gen_img = 0.5 * gen_img + 0.5

        # Save generated images and the high resolution originals
        fig, axs = plt.subplots(r, c)
        for row in range(r):
            for col in range(c):
                axs[row, col].imshow(gen_img[5 * row + col])
                axs[row, col].axis('off')
        fig.savefig("samples/%s/e%d-i%d.png" % (self.time, epoch, iter),
                    bbox_inches='tight',
                    dpi=100)
        plt.close()
Exemple #33
0
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from utils import Utils as U, DataLoader as D
from Hybird_tVAE import Hybird_tVAE

flags = tf.app.flags

# data_loader
# data_loader = D.DataLoader(D.Vocab('europarl_hybird_tvae', D.Level.CHAR))
data_loader = D.DataLoader(D.Vocab('train128', D.Level.CHAR))

# hybird_tvae config
flags.DEFINE_string('model_name', 'Hybird_tVAE', '')
flags.DEFINE_string('ckpt_path', './results/Hybird_tVAE/ckpt_f5_1/', '')
flags.DEFINE_string('logs_path', './results/Hybird_tVAE/logs_f5_1/', '')

flags.DEFINE_integer('batch_size', 32, '')
flags.DEFINE_integer('steps',
                     U.epoch_to_step(5, data_loader.train_size, batch_size=64),
                     '')
flags.DEFINE_integer('lr', 0.001, 'learning rate')
flags.DEFINE_integer('z_size', 32, '')
flags.DEFINE_integer('seq_len', 129, '')
flags.DEFINE_integer('rnn_num', 2, '')
flags.DEFINE_integer('embed_size', 80, '')
flags.DEFINE_integer('vocab_size', data_loader.vocab_size, '')
Exemple #34
0
    def sample(self, sess):
        def get_pi_idx(x, pdf):
            N = pdf.size
            accumulate = 0
            for i in range(0, N):
                accumulate += pdf[i]
                if (accumulate >= x):
                    return i
            print('error with sampling ensemble')
            return -1

        # def sample_gaussian_2d(mu1, mu2, s1, s2, rho):
        #   mean = [mu1, mu2]
        #   cov = [[s1*s1, rho*s1*s2], [rho*s1*s2, s2*s2]]
        #   x = np.random.multivariate_normal(mean, cov, 1)
        #   return x[0][0], x[0][1]

        def sample_gaussian_2d(mu, s):
            mean = mu
            sigma = s
            x = np.random.normal(mean, sigma)
            print(x.shape)
            return x

        prev_x = np.random.rand(1, 90, 3 * 25)
        prev_state = sess.run(self.cell.zero_state(1, tf.float32))

        dance = np.zeros((self.args.seq_length * 4, 3 * 25), dtype=np.float32)

        mixture_params = []
        data_loader = DataLoader('data', 'data_files.list', 'output_body.h5')
        mini, maxi = data_loader.load_preprocessed('true')

        for i in range(self.args.seq_length * 4):
            feed = {self.input_data: prev_x, self.state_in: prev_state}

            [o_pi, o_mu, o_sigma, next_state
             ] = sess.run([self.pi, self.mu, self.sigma, self.state_out], feed)

            idx = get_pi_idx(random.random(), o_pi[0])

            next_x1 = sample_gaussian_2d(o_mu[0, :, idx], o_sigma[0, :, idx])
            dance[i, :] = next_x1

            params = [o_pi[0], o_mu[0], o_sigma[0]]
            mixture_params.append(params)

            prev_x = np.zeros((1, 90, 3 * 25), dtype=np.float32)
            prev_x[0, 0:] = np.array([next_x1], dtype=np.float32)
            prev_state = next_state

            if i == 355:
                # archivo = open("archivo.txt","w")
                # archivo.write(str((dance)))
                # archivo.close()
                for j, sequence in enumerate(dance):
                    print('Maxi,mini: ')
                    print(maxi)
                    print(mini)
                    dance[j] = sequence * (maxi - mini) + mini
                np.savetxt('fooTODO.csv', dance, delimiter=",")

        return dance, mixture_params
from __future__ import division
from __future__ import print_function

from utils import DataLoader

import numpy as np
from sklearn import metrics
import pandas

import tensorflow as tf
from tensorflow.contrib import learn

### Training data

print("LOAD")
loader = DataLoader('data/tweets',5,144)
x,y = loader.get_xy()
split = int(len(x)*0.8)
X_train,X_test = x[:split],x[split:]
y_train,y_test = pandas.Series(y[:split]),pandas.Series(y[split:])
y_train =  y_train.convert_objects(convert_numeric=True)
y_test =  y_test.convert_objects(convert_numeric=True)

### Process vocabulary

MAX_DOCUMENT_LENGTH = 144

print("PREPROCESS")
char_processor = learn.preprocessing.ByteProcessor(MAX_DOCUMENT_LENGTH)
X_train = np.array(list(char_processor.fit_transform(X_train)))
X_test = np.array(list(char_processor.transform(X_test)))
Exemple #36
0
def train(args):
    data_loader = DataLoader(args.batch_size, args.data_scale,
                             args.bptt_length)
    data_loader.reset_batch_pointer()

    # model needs to know the dim of one-hot vectors
    args.char_vec_dim = data_loader.char_vec_dim
    # also the max length of char vector
    args.max_char_len = data_loader.max_char_len

    if args.model_dir != '' and not os.path.exists(args.model_dir):
        os.makedirs(args.model_dir)

    with open(os.path.join(args.model_dir, 'config.pkl'), 'wb') as f:
        pickle.dump(args, f)
    print("hyperparam. saved.")

    model = Model(args)

    # training
    with tf.Session() as sess:

        tf.global_variables_initializer().run()

        saver = tf.train.Saver()
        if args.load_model is not None:
            saver.restore(sess, args.load_model)
            _, ep_start = args.load_model.rsplit("-", 1)
            ep_start = int(ep_start)
            model_steps = int(ep_start * data_loader.num_batches)
        else:
            ep_start = 0
            model_steps = last_model_steps = 0

        last_time = time.time()

        for ep in range(ep_start, args.num_epochs):
            ep_loss = []
            sess.run(
                tf.assign(model.lr,
                          args.learning_rate * (args.decay_rate**ep)))

            for i in range(int(data_loader.num_sequences / args.batch_size)):
                idx = ep * data_loader.num_sequences + i * args.batch_size
                start = time.time()
                x, y, w, c = data_loader.next_batch()

                loss_list, model_steps = model.train(
                    sess=sess,
                    sequence=x,
                    targets=y,
                    weights=w,
                    texts=c,
                    subseq_length=args.bptt_length,
                    step_count=model_steps)

                ep_loss += loss_list

                if model_steps - last_model_steps >= 100:
                    last_model_steps = model_steps
                    new_time = time.time()
                    print(
                        "Sequence %d/%d (epoch %d), batch %d, train_loss = %.3f, time/(100*batch) = %.3f"
                        % (idx, args.num_epochs * data_loader.num_sequences,
                           ep, model_steps, np.mean(loss_list),
                           new_time - last_time),
                        flush=True)
                    last_time = new_time
            print("Epoch %d completed, average train loss %.6f" %
                  (ep, np.mean(ep_loss)))
            if not os.path.isdir(args.model_dir):
                os.makedirs(args.model_dir)
            if (ep + 1) % args.save_every == 0:
                checkpoint_path = os.path.join(args.model_dir, 'model.ckpt')
                saver.save(sess,
                           save_path=checkpoint_path,
                           global_step=(ep + 1))
                print("model saved.")