import os import time import numpy as np import tensorflow as tf # from models import model # import utils from utils import CUR_TIME, logger, FLAGS ######################################### # FLAGS ######################################### # environmental parameters FLAGS.add('--model', type=str, default='resnet', help='the type of NN model. cnn, crnn, resnn, resrnn...') FLAGS.add('--outputs_dir', type=str, default='outputs/', help='Directory where to write event logs and checkpoint.') FLAGS.add("--log_level", type=int, default=20, help="numeric value of logger level, 20 for info, 10 for debug.") # FLAGS.add('--if_eval', # type=bool, # default=True, # help="Whether to log device placement.") FLAGS.add('--debug', type=bool,
import tensorflow as tf # from tensorflow.models.image.cifar10 import cifar10 # from tensorflow.models.image.cifar10 import cifar10_input # from tensorflow.models.image.cifar10.cifar10_input import _generate_image_and_label_batch from tensorflow.models.image.cifar10.cifar10_input import read_cifar10 # import utils from utils import logger from utils import FLAGS ######################################### # FLAGS ######################################### FLAGS.add('--data_dir', type=str, default='data/', help='directory for storing datasets and outputs.') FLAGS.add('--num_read_threads', type=int, default=5, help='number of reading threads to shuffle examples ' 'between files.') FLAGS.add("--max_images", type=int, help="save up to max_images number of images in summary.") # dataset specific settings FLAGS.add('--dataset', type=str, default='cifar-10', help='dataset type, each dataset has its own default settings.')
"""basic residual network class.""" import tensorflow as tf from tensorflow.contrib.layers import variance_scaling_initializer from tensorflow.contrib.layers import l2_regularizer from tensorflow.contrib.layers import fully_connected from models import basic_resnet from models.basic_resnet import UnitsGroup # from utils import logger from utils import FLAGS FLAGS.add('--groups_conf', type=str, default='' '3, 16, 64, 0\n' '3, 32, 128, 1\n' '16, 64, 256, 1', help='Configurations of different residual groups.') FLAGS.add('--ror_l1', type=bool, default=True, help='RoR enable level 1 ' 'requirement: every group is downsampling') FLAGS.add('--ror_l2', type=bool, default=True, help='RoR enable level 2, residual group shortcuts') class Model(basic_resnet.Model):
# test logging # ================================ # utils.set_logging(stream=False) # utils.set_logger(stream=True) # logger.info("logger111111") logger.set_logger(stream=True) logger.info(CUR_TIME) logger.newline() logger.error("newline beneath~") logger.newline(2) logger.info("haha") # ================================ # test FLAGS # ================================ FLAGS.add("--aa", type=float, default=11., help="doc for dd") logger.info("aa: {}".format(FLAGS.get('aa'))) # for flag that should be overwrite later, don't set default FLAGS.add("--bb", type=int, default=None, help="doc for dd") if FLAGS.get('aa') == 11: FLAGS.overwrite_none(bb=15) FLAGS.add("--cc", type=bool, default=False, help="doc for dd") FLAGS.add("--dd", type=str, default="dddddd", help="doc for dd") # for flag that should be overwrite later, don't set default FLAGS.add("--ff", type=str, help="doc for dd") FLAGS.add("--gg", type=str, help="doc for dd") FLAGS.add("--hh", type=str, default="hhhhh", help="doc for dd") # overwrite or set new default values FLAGS.overwrite_defaults(dd="replaced dd", ee="an extra flag", ff="ff") FLAGS.overwrite_none(hh="this won't show", gg="gggg", ii="illigal")
import tensorflow as tf from tensorflow.contrib.layers import variance_scaling_initializer from tensorflow.contrib.layers import l2_regularizer from tensorflow.contrib.layers import fully_connected from models import basic_resnet # from models.basic_resnet import UnitsGroup # from utils import logger from utils import FLAGS FLAGS.add( '--groups_conf', type=str, default='' '1, 16, 64, 0\n' # '2, 32, 64, 1\n' # '2, 64, 128, 1\n' '1, 16, 64, 0\n' '1, 32, 128, 0\n' '1, 64, 256, 0\n', help='Configurations of different residual groups.') FLAGS.add('--max_pool', type=bool, default=True, help='whether to add max pooling before first residual unit.') FLAGS.add('--resgroup_len', type=int, default=0, help='whether to add max pooling before first residual unit.') FLAGS.add('--readout', type=int,
"""basic residual network class.""" import tensorflow as tf from tensorflow.contrib.layers import variance_scaling_initializer from tensorflow.contrib.layers import l2_regularizer from tensorflow.contrib.layers import fully_connected from models import basic_resnet from models.basic_resnet import UnitsGroup # from utils import logger from utils import FLAGS FLAGS.add('--groups_conf', type=str, default='' '3, 16, 32, 0\n' '4, 32, 64, 1\n' '6, 64, 128, 1\n' '3, 128, 256, 0', help='Configurations of different residual groups.') FLAGS.add('--max_pool', type=bool, default=True, help='whether to add max pooling before first residual unit.') class Model(basic_resnet.Model): """Residual neural network model. classify web page only based on target html.""" def resnn(self, image_batch): """Build the resnn model. Args:
from collections import namedtuple import tensorflow as tf from tensorflow.contrib.layers import convolution2d from tensorflow.contrib.layers import batch_norm from tensorflow.contrib.layers import variance_scaling_initializer from tensorflow.contrib.layers import l2_regularizer from tensorflow.contrib.layers.python.layers import utils from models import model from utils import logger from utils import FLAGS FLAGS.add('--special_first', type=bool, default=False, help='special first residual unit from P14 of ' '(arxiv.org/abs/1603.05027') FLAGS.add('--shortcut', type=int, default=1, help='shortcut connection type: (arXiv:1512.03385)' '0: 0-padding and average pooling' '1: convolution projection only for increasing dimension' '2: projection for all shortcut') FLAGS.add('--unit_type', type=int, default=0, help='# the type of residual unit ' '# 0: post-activation; 1: pre-activation') FLAGS.add('--residual_type',
import tensorflow as tf from tensorflow.contrib.layers import variance_scaling_initializer from tensorflow.contrib.layers import l2_regularizer from tensorflow.contrib.layers import fully_connected from models import basic_resnet # from models.basic_resnet import UnitsGroup # from utils import logger from utils import FLAGS FLAGS.overwrite_defaults(image_size=32) FLAGS.add('--groups_conf', type=str, default='' '12, 12, -1, 1\n' '12, 12, -1, 1\n' '12, 12, -1, 0', help='Configurations of different residual groups.') class Model(basic_resnet.Model): """Residual neural network model. classify web page only based on target html.""" def resnn(self, image_batch): """Build the resnn model. Args: image_batch: Sequences returned from inputs_train() or inputs_eval. Returns: Logits. """