Exemple #1
0
def data_process(sql, normal, scale):
    with open(vec_dir, "rb") as f:
        word2vec = pickle.load(f)
        dictionary = word2vec["dictionary"]
        embeddings = word2vec["embeddings"]
        reverse_dictionary = word2vec["reverse_dictionary"]
    sql_data = []
    normal_data = []
    with open(sql, "r", encoding="utf-8") as f:
        reader = csv.DictReader((line.replace('\0', '') for line in f),
                                fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            if len(word) <= maxlen:
                sql_data.append(word)
    with open(normal, "r", encoding="utf-8") as f:
        reader = csv.DictReader((line.replace('\0', '') for line in f),
                                fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            if len(word) <= maxlen:
                normal_data.append(word)
    sql_num = len(sql_data)
    normal_num = len(normal_data)
    sql_labels = [1] * sql_num
    normal_labels = [0] * normal_num
    datas = sql_data + normal_data
    labels = sql_labels + normal_labels

    def to_index(data):
        d_index = []
        for word in data:
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:
                d_index.append(dictionary["UNK"])
        return d_index

    datas_index = [to_index(data) for data in datas]
    datas_index = pad_sequences(datas_index, value=-1, maxlen=maxlen)
    rand = random.sample(range(len(datas_index)), len(datas_index))
    datas = [datas_index[index] for index in rand]
    labels = [labels[index] for index in rand]
    datas_embed = []
    dims = len(embeddings[0])

    for data in datas:
        data_embed = []
        for d in data:
            if d != -1:
                data_embed.extend(embeddings[d])
            else:
                data_embed.extend([0.0] * dims)
        datas_embed.append(data_embed)

    train_datas, test_datas, train_labels, test_labels = train_test_split(
        datas_embed, labels, test_size=scale)
    return train_datas, test_datas, train_labels, test_labels
Exemple #2
0
def pre_process():
    with open(vec_dir, "rb") as f:
        word2vec = pickle.load(f)
        dictionary = word2vec["dictionary"]
        embeddings = word2vec["embeddings"]
        reverse_dictionary = word2vec["reverse_dictionary"]
    xssed_data = []
    normal_data = []
    with open("data\\xssed.csv", "r", encoding="utf-8") as f:
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            xssed_data.append(word)
    with open("data\\normal_examples2.csv", "r", encoding="utf-8") as f:
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            normal_data.append(word)
    xssed_num = len(xssed_data)
    normal_num = len(normal_data)
    xssed_labels = [1] * xssed_num
    normal_labels = [0] * normal_num
    datas = xssed_data + normal_data
    labels = xssed_labels + normal_labels

    def to_index(data):
        d_index = []
        for word in data:
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:
                d_index.append(dictionary["UNK"])
        return d_index

    datas_index = [to_index(data) for data in datas]
    datas_index = pad_sequences(datas_index, value=-1, maxlen=maxlen)
    rand = random.sample(range(len(datas_index)), len(datas_index))
    datas = [datas_index[index] for index in rand]
    labels = [labels[index] for index in rand]
    datas_embed = []
    dims = len(embeddings["UNK"])
    n = 0
    for data in datas:
        data_embed = []
        for d in data:
            if d != -1:
                data_embed.extend(embeddings[reverse_dictionary[d]])
            else:
                data_embed.extend([0.0] * dims)
        datas_embed.append(data_embed)
        n += 1
        if n % 1000 == 0:
            print(n)
    train_datas, test_datas, train_labels, test_labels = train_test_split(
        datas_embed, labels, test_size=0.3)
    return train_datas, test_datas, train_labels, test_labels
Exemple #3
0
def pre_process():
    with open(vec_dir, "rb") as f:
        word2vec = pickle.load(f)
        dictionary = word2vec["dictionary"]
        reverse_dictionary = word2vec["reverse_dictionary"]
        embeddings = word2vec["embeddings"]
    xssed_data = []
    normal_data = []
    with open("data\\xssed.csv", "r", encoding="utf-8") as f:
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            xssed_data.append(word)
    with open("data\\normal_examples.csv", "r", encoding="utf-8") as f:
        reader = csv.reader(f)
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            normal_data.append(word)
    xssed_num = len(xssed_data)
    normal_num = len(normal_data)
    xssed_labels = [1] * xssed_num
    normal_labels = [0] * normal_num
    datas = xssed_data + normal_data
    labels = xssed_labels + normal_labels
    labels = to_categorical(labels)

    def to_index(data):
        d_index = []
        for word in data:
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:
                d_index.append(dictionary["UNK"])
        return d_index

    datas_index = [to_index(data) for data in datas]
    datas_index = pad_sequences(datas_index, value=-1)
    rand = random.sample(range(len(datas_index)), len(datas_index))
    datas = [datas_index[index] for index in rand]
    labels = [labels[index] for index in rand]
    train_datas, test_datas, train_labels, test_labels = train_test_split(
        datas, labels, test_size=0.3)
    process_datas = word2vec
    process_datas["train_datas"] = train_datas
    process_datas["test_datas"] = test_datas
    process_datas["train_labels"] = train_labels
    process_datas["test_labels"] = test_labels
    with open(process_datas_dir, "wb") as f:
        pickle.dump(process_datas, f)
    print("Preprocessing data over!")
    print("Saved datas and labels to ", process_datas_dir)
skip_window = 5
num_sampled = 64
num_iter = 5
plot_only = 100
log_dir = "word2vec.log"
plt_dir = "./file/word2vec.png"
vec_dir = "./file/word2vec.pickle"

start = time.time()
words = []
datas = []
with open("./data/sql.csv", "r", encoding='UTF-8') as f:
    reader = f.readlines()
    for row in reader:
        #print row
        word = GeneSeg(row)
        datas.append(word)
        words += word
    #print datas


#构建数据集
def build_dataset(datas, words):
    count = [["UNK", -1]]
    counter = Counter(words)
    count.extend(counter.most_common(vocabulary_size - 1))
    vocabulary = [c[0] for c in count]
    data_set = []
    for data in datas:
        d_set = []
        for word in data:
Exemple #5
0
def pre_process():
    with open(vec_dir, "rb") as f:
        word2vec = pickle.load(f)
        dictionary = word2vec["dictionary"]
        reverse_dictionary = word2vec["reverse_dictionary"]
        embeddings = word2vec["embeddings"]
    xssed_data = []
    normal_data = []
    with open("data\\xssed.csv", "r", encoding="utf-8") as f:
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            xssed_data.append(word)
    with open("data\\normal_examples.csv", "r", encoding="utf-8") as f:
        reader = csv.reader(f)
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            normal_data.append(word)
    xssed_num = len(xssed_data)
    normal_num = len(normal_data)
    xssed_labels = [1] * xssed_num
    normal_labels = [0] * normal_num
    datas = xssed_data + normal_data
    labels = xssed_labels + normal_labels
    labels = to_categorical(labels)

    def to_index(data):
        d_index = []
        for word in data:
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:
                d_index.append(dictionary["UNK"])
        return d_index

    datas_index = [to_index(data) for data in datas]
    datas_index = pad_sequences(datas_index, value=-1)
    rand = random.sample(range(len(datas_index)), len(datas_index))
    datas = [datas_index[index] for index in rand]
    labels = [labels[index] for index in rand]
    train_datas, test_datas, train_labels, test_labels = train_test_split(
        datas, labels, test_size=0.3)
    train_size = len(train_labels)
    test_size = len(test_labels)
    input_num = len(train_datas[0])
    dims_num = embeddings["UNK"].shape[0]
    word2vec["train_size"] = train_size
    word2vec["test_size"] = test_size
    word2vec["input_num"] = input_num
    word2vec["dims_num"] = dims_num
    with open(vec_dir, "wb") as f:
        pickle.dump(word2vec, f)
    print("Saved word2vec to:", vec_dir)
    print("Write trian datas to:", pre_datas_train)
    with open(pre_datas_train, "w") as f:
        for i in range(train_size):
            data_line = str(train_datas[i].tolist()) + "|" + str(
                train_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write test datas to:", pre_datas_test)
    with open(pre_datas_test, "w") as f:
        for i in range(test_size):
            data_line = str(test_datas[i].tolist()) + "|" + str(
                test_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write datas over!")
Exemple #6
0
model_1 = load_model(model_dir1)
model_2 = load_model(model_dir2)

with open(vec_dir, "rb") as f:
    # print f.readlines()
    word2vec = pickle.load(f)
    # print type(word2vec)
    # print len(word2vec)
    # print word2vec
    dictionary = word2vec["dictionary"]
    reverse_dictionary = word2vec["reverse_dictionary"]
    embeddings = word2vec["embeddings"]

test_data = input()
data_test = []
data = GeneSeg(test_data)
print(u"split words result:" + str(data))
for word in data:
    # print word
    if word in dictionary.keys():
        data_test.append(dictionary[word])
    else:
        data_test.append(dictionary["UNK"])
#data_test=pad_sequences(data_test,value=-1)
#plot_model(model,to_file='./model.png',show_shapes=True,show_layer_names=True)
data_test2 = []
for i in range(0, 591 - len(data_test)):
    data_test2.append(-1)
data_test2 += data_test
data_embed = []
for d in data_test2:
Exemple #7
0
skip_window = 5
num_sampled = 64
num_iter = 5
plot_only = 100
log_dir = "word2vec.log"
plt_dir = "file\\word2vec.png"
vec_dir = "file\\word2vec.pickle"

start = time.time()
words = []
datas = []
with open("data\\xssed.csv", "r", encoding="utf-8") as f:
    reader = csv.DictReader(f, fieldnames=["payload"])
    for row in reader:
        payload = row["payload"]
        word = GeneSeg(payload)
        datas.append(word)
        words += word


# 构建数据集
def build_dataset(datas, words):
    count = [["UNK", -1]]
    counter = Counter(words)
    count.extend(counter.most_common(vocabulary_size - 1))
    #List the n most common elements and their counts from the most common to the least.
    # If n is None, then list all element counts.
    vocabulary = [c[0]
                  for c in count]  # put out the first element in every list
    data_set = []
    for data in datas:
Exemple #8
0
top_k = 8
num_sampled = 64
num_steps = 101
plot_only = 100
log_dir = "word2vec.log"
plt_dir = "./file/word2vec.png"
vec_dir = "./file/word2vec.pickle"
start = time.time()

words = []
print(os.listdir("./"))
with open("./data/sql.csv", "r") as f:
    reader = csv.DictReader(f, fieldnames=["payload"])
    for row in reader:
        payload = row["payload"]
        word = GeneSeg(unquote(payload))
        words += word

print("words size:", len(words))


#构建数据集
def build_dataset(words):
    count = [["UNK", -1]]
    counter = Counter(words)
    #print counter.most_common(vocabulary_size-1)
    count.extend(counter.most_common(vocabulary_size - 1))
    dictionary = {}
    for word, _ in count:
        dictionary[word] = len(dictionary)
        print(dictionary[word], word)
Exemple #9
0
def pre_process():
    with open(vec_dir, "rb") as f:
        #print(f.readlines())
        word2vec = pickle.load(f)
        print(type(word2vec))  #<class 'dict'>
        print(len(word2vec))  #7
        print(word2vec)
        dictionary = word2vec["dictionary"]
        reverse_dictionary = word2vec["reverse_dictionary"]
        embeddings = word2vec["embeddings"]
    xssed_data = []
    normal_data = []
    with open("data\\xssedtiny.csv", "r", encoding="utf-8") as f:
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            xssed_data.append(word)
    with open("data\\normal_less.csv", "r", encoding="utf-8") as f:
        reader = csv.reader(f)
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            normal_data.append(word)
    xssed_num = len(xssed_data)
    normal_num = len(normal_data)
    xssed_labels = [1] * xssed_num  #标签
    normal_labels = [0] * normal_num
    datas = xssed_data + normal_data
    labels = xssed_labels + normal_labels
    labels = to_categorical(
        labels)  #Converts a class vector (integers) to binary class matrix.

    def to_index(data):  #去word2vec里查询
        d_index = []
        for word in data:
            #print(word)
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:
                d_index.append(dictionary["UNK"])
        #print(d_index)
        return d_index

    datas_index = [to_index(data) for data in datas[0:]]
    for i in datas_index:
        if len(i) > 100:
            print(1, len(i))
    datas_index = pad_sequences(datas_index, value=-1)
    #print(datas_index)
    rand = random.sample(range(len(datas_index)), len(datas_index))  #打乱重采样
    datas = [datas_index[index] for index in rand]
    labels = [labels[index] for index in rand]
    train_datas, test_datas, train_labels, test_labels = train_test_split(
        datas, labels, test_size=0.3)
    #print('train data:',train_datas)
    train_size = len(train_labels)
    #print(train_size)#15381
    test_size = len(test_labels)
    #print(test_size)#6593
    input_num = len(train_datas[0])
    #print(input_num)  #258
    #print('sb',type(embeddings))
    dims_num = embeddings["UNK"]
    #print(dims_num) #128
    word2vec["train_size"] = train_size  #15381
    word2vec["test_size"] = test_size  #6593
    word2vec["input_num"] = input_num  #258
    word2vec["dims_num"] = dims_num  #128
    with open(vec_dir, "wb") as f:
        pickle.dump(word2vec, f)
    print("Saved word2vec to:", vec_dir)
    print("Write trian datas to:", pre_datas_train)
    with open(pre_datas_train, "w") as f:
        for i in range(train_size):
            data_line = str(train_datas[i].tolist()) + "|" + str(
                train_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write test datas to:", pre_datas_test)
    with open(pre_datas_test, "w") as f:
        for i in range(test_size):
            data_line = str(test_datas[i].tolist()) + "|" + str(
                test_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write datas over!")
Exemple #10
0
def pre_process():
    with open(vec_dir, "rb") as f:
        #print f.readlines()
        word2vec = pickle.load(f)
        #print type(word2vec)
        #print len(word2vec)
        #print word2vec
        dictionary = word2vec["dictionary"]
        reverse_dictionary = word2vec["reverse_dictionary"]
        embeddings = word2vec["embeddings"]

    sql_data = []
    normal_data = []
    with open("./data/sql.csv", "r", encoding='UTF-8') as f:
        reader = f.readlines()
        for row in reader:  ##################
            word = GeneSeg(row)
            sql_data.append(word)

    with open("./data/normal_less.csv", "r", encoding='UTF-8') as f:
        reader = f.readlines()
        for row in reader:
            word = GeneSeg(row)
            normal_data.append(word)

    sql_num = len(sql_data)
    normal_num = len(normal_data)
    #print xssed_num,normal_num
    sql_labels = [1] * sql_num
    normal_labels = [0] * normal_num
    data = sql_data + normal_data
    labels = sql_labels + normal_labels
    labels = to_categorical(labels)

    def to_index(data):  #去word2vec里查询
        d_index = []
        for word in data:
            #print word
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:

                d_index.append(dictionary["UNK"])
        #print d_index
        return d_index

    data_index = [to_index(d) for d in data[0:]]
    data_index = pad_sequences(data_index, value=-1)  # 变长序列
    rand = random.sample(range(len(data_index)), len(data_index))  #打乱重采样
    data = [data_index[index] for index in rand]
    labels = [labels[index] for index in rand]
    train_data, test_data, train_labels, test_labels = train_test_split(
        data, labels, test_size=0.1)
    #print 'train data:',train_datas
    train_size = len(train_labels)
    test_size = len(test_labels)
    input_num = len(train_data[0])
    #print 'sb',type(embeddings)
    #print embeddings
    dims_num = embeddings["UNK"]
    word2vec["train_size"] = train_size
    word2vec["test_size"] = test_size
    word2vec["input_num"] = input_num
    word2vec["dims_num"] = dims_num
    with open(vec_dir, "wb") as f:
        pickle.dump(word2vec, f)
    print("Saved word2vec to:", vec_dir)
    print("Write train data to:", data_train)
    with open(data_train, "w") as f:
        for i in range(train_size):
            data_line = str(train_data[i].tolist()) + "|" + str(
                train_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write test data to:", data_test)
    with open(data_test, "w") as f:
        for i in range(test_size):
            data_line = str(test_data[i].tolist()) + "|" + str(
                test_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write data over!")
Exemple #11
0
def pre_process():
    with open(vec_dir, "rb") as f:
        word2vec = pickle.load(f)
        dictionary = word2vec["dictionary"]
        reverse_dictionary = word2vec["reverse_dictionary"]
        embeddings = word2vec["embeddings"]
    xssed_data = []
    normal_data = []
    with open("data/xssed.csv", "r", encoding="utf-8") as f:
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            xssed_data.append(word)
    with open("data/normal_examples.csv", "r", encoding="utf-8") as f:
        reader = csv.reader(f)
        reader = csv.DictReader(f, fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            normal_data.append(word)
    xssed_num = len(xssed_data)
    normal_num = len(normal_data)
    xssed_labels = [1] * xssed_num
    normal_labels = [0] * normal_num
    datas = xssed_data + normal_data
    labels = xssed_labels + normal_labels
    labels = to_categorical(labels)

    def to_index(data):
        d_index = []
        for word in data:
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:
                d_index.append(dictionary["UNK"])
        return d_index

    datas_index = [to_index(data) for data in datas]
    datas_index = pad_sequences(datas_index, value=-1)
    rand = random.sample(range(len(datas_index)), len(datas_index))
    datas = [datas_index[index] for index in rand]
    labels = [labels[index] for index in rand]

    if sys.argv[1] == 'kfold':
        folder = KFold(n_splits=10, shuffle=False, random_state=0)
        number = 0
        for train, test in folder.split(datas, labels):

            train = np.random.choice(train,
                                     size=len(train) // int(sys.argv[3]),
                                     replace=False)
            test = np.random.choice(test,
                                    size=len(test) // int(sys.argv[3]),
                                    replace=False)

            train_datas = [datas[i] for i in train]
            test_datas = [datas[i] for i in test]
            train_labels = [labels[i] for i in train]
            test_labels = [labels[i] for i in test]
            train_size = len(train_labels)
            test_size = len(test_labels)

            input_num = len(train_datas[0])
            dims_num = embeddings["UNK"].shape[0]
            word2vec["train_size"] = train_size
            word2vec["test_size"] = test_size
            word2vec["input_num"] = input_num
            word2vec["dims_num"] = dims_num

            with open(pre_datas_trains[number], "w") as f:
                for i in range(train_size):
                    data_line = str(train_datas[i].tolist()) + "|" + str(
                        train_labels[i].tolist()) + "\n"
                    f.write(data_line)

            with open(pre_datas_tests[number], "w") as f:
                for i in range(test_size):
                    data_line = str(test_datas[i].tolist()) + "|" + str(
                        test_labels[i].tolist()) + "\n"
                    f.write(data_line)

            number = number + 1

    else:
        train_datas, test_datas, train_labels, test_labels = train_test_split(
            datas, labels, test_size=float(sys.argv[2]))

        train_size = len(train_labels)
        test_size = len(test_labels)

        input_num = len(train_datas[0])
        dims_num = embeddings["UNK"].shape[0]
        word2vec["train_size"] = train_size
        word2vec["test_size"] = test_size
        word2vec["input_num"] = input_num
        word2vec["dims_num"] = dims_num

        with open(pre_datas_trains[0], "w") as f:
            for i in range(train_size):
                data_line = str(train_datas[i].tolist()) + "|" + str(
                    train_labels[i].tolist()) + "\n"
                f.write(data_line)

        with open(pre_datas_tests[0], "w") as f:
            for i in range(test_size):
                data_line = str(test_datas[i].tolist()) + "|" + str(
                    test_labels[i].tolist()) + "\n"
                f.write(data_line)

    with open(vec_dir, "wb") as f:
        pickle.dump(word2vec, f)
def pre_process():
    with open(vec_dir, "rb") as f:
        #print(f.readlines())
        word2vec = pickle.load(f)
        #print(type(word2vec))#<class 'dict'>
        #print(len(word2vec))#7
        #print(word2vec)
        dictionary = word2vec["dictionary"]
        reverse_dictionary = dict(word2vec["reverse_dictionary"])
        embeddings = word2vec["embeddings"]
    sql_data = []
    normal_data = []
    with open("data\\sql-original-noshort-norepeat-sqlfilter.txt",
              "r",
              encoding="utf-8") as f:
        reader = csv.DictReader((line.replace('\0', '') for line in f),
                                fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            #print(len(word))
            if len(word) <= 400:
                sql_data.append(word)
    with open("data\\normal-original-noshort-norepeat-sqlfilter.txt",
              "r",
              encoding="utf-8") as f:
        reader = csv.DictReader((line.replace('\0', '') for line in f),
                                fieldnames=["payload"])
        for row in reader:
            payload = row["payload"]
            word = GeneSeg(payload)
            #print(len(word))
            if len(word) <= 400:
                normal_data.append(word)
    sql_num = len(sql_data)
    normal_num = len(normal_data)
    sql_labels = [1] * sql_num  #标签
    normal_labels = [0] * normal_num
    datas = sql_data + normal_data
    labels = sql_labels + normal_labels
    labels = to_categorical(
        labels)  #Converts a class vector (integers) to binary class matrix.

    def to_index(data):  #去word2vec里查询
        d_index = []
        for word in data:
            #print(word)
            if word in dictionary.keys():
                d_index.append(dictionary[word])
            else:
                d_index.append(dictionary["UNK"])
        #print(d_index)
        return d_index

    datas_index = [to_index(data) for data in datas[0:]]
    #for i in datas_index:
    #if len(i)>100:
    #print(1,len(i))
    #序列中最长长度进行长度序列化
    datas_index = pad_sequences(datas_index, value=-1)
    #print(datas_index)
    rand = random.sample(range(len(datas_index)), len(datas_index))  #打乱重采样
    datas = [datas_index[index] for index in rand]
    labels = [labels[index] for index in rand]
    train_datas, test_datas, train_labels, test_labels = train_test_split(
        datas, labels, test_size=0.1)
    #print('train data:',train_datas)
    train_size = len(train_labels)
    #print(train_size)#15381
    test_size = len(test_labels)
    #print(test_size)#6593
    input_num = len(train_datas[0])
    #print(input_num)  #189
    #print('sb',type(embeddings))
    dims_num = len(embeddings[0])
    #print(dims_num) #128
    word2vec["train_size"] = train_size
    word2vec["test_size"] = test_size
    word2vec["input_num"] = input_num
    word2vec["dims_num"] = dims_num
    with open(vec_dir, "wb") as f:
        pickle.dump(word2vec, f)
    print("Saved word2vec to:", vec_dir)
    print("Write trian datas to:", pre_datas_train)
    with open(pre_datas_train, "w") as f:
        for i in range(train_size):
            data_line = str(train_datas[i].tolist()) + "|" + str(
                train_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write test datas to:", pre_datas_test)
    with open(pre_datas_test, "w") as f:
        for i in range(test_size):
            data_line = str(test_datas[i].tolist()) + "|" + str(
                test_labels[i].tolist()) + "\n"
            f.write(data_line)
    print("Write datas over!")