def testSingleImg(): NetHelper.gpu() #submission() nh = NetHelper(deploy=cfgs.deploy_pt, model=cfgs.best_model_dir) img = Data.imFromFile(os.path.join(cfgs.train_mask_path, "1_1_mask.tif")) res = nh.bin_pred_map(img) print(np.histogram(res))
def testSingleImg(): NetHelper.gpu() #submission() nh=NetHelper(deploy=cfgs.deploy_pt,model=cfgs.best_model_dir) img=Data.imFromFile(os.path.join(cfgs.train_mask_path,"1_1_mask.tif")) res=nh.bin_pred_map(img) print(np.histogram(res))
def submission(): NetHelper.gpu(2) #submission() nh = NetHelper(deploy=cfgs.deploy_pt, model=cfgs.best_model_dir) if debug: l = Data.folder_opt(cfgs.train_data_path, func, nh) else: l = Data.folder_opt(cfgs.test_data_path, func, nh) l = np.array(l, dtype=[('x', int), ('y', object)]) l.sort(order='x') first_row = 'img,pixels' file_name = 'submission.csv' with open(file_name, 'w+') as f: f.write(first_row) for i in l: s = str(i[0]) + ',' + i[1] f.write(('\n' + s))
def submission(): NetHelper.gpu(2) #submission() nh=NetHelper(deploy=cfgs.deploy_pt,model=cfgs.best_model_dir) if debug: l=Data.folder_opt(cfgs.train_data_path,func,nh) else: l=Data.folder_opt(cfgs.test_data_path,func,nh) l=np.array(l,dtype=[('x',int),('y',object)]) l.sort(order='x') first_row = 'img,pixels' file_name = 'submission.csv' with open(file_name, 'w+') as f: f.write(first_row) for i in l: s = str(i[0]) + ',' + i[1] f.write(('\n'+s))