print_args(args) result = open(os.path.join(args.result, "OfficeHome_HAFN_" + args.task + '_' + args.post + '.' + args.repeat + "_score.txt"), "a") t_root = os.path.join(args.data_root) t_label = os.path.join(args.data_root, args.target + "_shared.txt") data_transform = transforms.Compose([ transforms.Scale((256, 256)), transforms.CenterCrop((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) t_set = OfficeImage(t_root, t_label, data_transform) assert len(t_set) == get_dataset_length(args.target + '_shared') t_loader = torch.utils.data.DataLoader(t_set, batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.num_workers) netG = ResBase50().cuda() netF = ResClassifier(class_num=args.class_num, extract=False).cuda() netG.eval() netF.eval() for epoch in range(args.epoch/2, args.epoch + 1): if epoch % 10 != 0: continue netG.load_state_dict(torch.load(os.path.join(args.snapshot, "OfficeHome_HAFN_" + args.task + "_netG_" + args.post + "." + args.repeat + "_" + str(epoch) + ".pth"))) netF.load_state_dict(torch.load(os.path.join(args.snapshot, "OfficeHome_HAFN_" + args.task + "_netF_" + args.post + "." + args.repeat + "_" + str(epoch) + ".pth")))
beta2 = args.beta2 gpu_id = args.gpu_id num_classes = args.num_classes threshold = args.threshold log_interval = args.log_interval cls_epoches = args.cls_epoches gan_epoches = args.gan_epoches alpha = args.alpha s1_root = os.path.join(data_root, args.s1, "images") s1_label = os.path.join(data_root, args.s1, "label.txt") s2_root = os.path.join(data_root, args.s2, "images") s2_label = os.path.join(data_root, args.s2, "label.txt") t_root = os.path.join(data_root, args.t, "images") t_label = os.path.join(data_root, args.t, "label.txt") s1_set = OfficeImage(s1_root, s1_label, split="train") s2_set = OfficeImage(s2_root, s2_label, split="train") t_set = OfficeImage(t_root, t_label, split="train") t_set_test = OfficeImage(t_root, t_label, split="test") s1_loader_raw = torch.utils.data.DataLoader(s1_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) s2_loader_raw = torch.utils.data.DataLoader(s2_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) t_loader_raw = torch.utils.data.DataLoader(t_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) t_loader_test = torch.utils.data.DataLoader(t_set_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) s1_loader_raw1 = torch.utils.data.DataLoader(s1_set, batch_size=1,
print_args(args) source_root = os.path.join(args.data_root) source_label = os.path.join(args.data_root, args.source + ".txt") target_root = os.path.join(args.data_root) target_label = os.path.join(args.data_root, args.target + "_shared.txt") train_transform = transforms.Compose([ transforms.Scale((256, 256)), transforms.RandomCrop((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) source_set = OfficeImage(source_root, source_label, train_transform) target_set = OfficeImage(target_root, target_label, train_transform) assert len(source_set) == get_dataset_length(args.source) assert len(target_set) == get_dataset_length(args.target + '_shared') source_loader = torch.utils.data.DataLoader(source_set, batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.num_workers) target_loader = torch.utils.data.DataLoader(target_set, batch_size=args.batch_size, shuffle=args.shuffle, num_workers=args.num_workers) netG = ResBase50().cuda() netF = ResClassifier(class_num=args.class_num, extract=args.extract, dropout_p=args.dropout_p).cuda() netF.apply(weights_init)