def run_train(): # t0 = time.time() pt = Preprocessor() tr = Trainer_nn() X_train, y_train = pt.get_data_labels() X_test, y_test = pt.get_data_labels("test") # X_train, y_train = pt.load_data() # X_test, y_test = pt.load_data("mnist_test_data.npz") clf = tr.mlp(X_train, y_train) tr.save_model(clf, "mlp_mnist_Hu300x300ReluSgdIter100Acc96Sample60000.m") tester = Tester("mlp_mnist_Hu300x300ReluSgdIter100Acc96Sample60000.m") mt, score, repo = tester.clf_quality(X_test, y_test) print(mt, score, repo) return clf
def run_train(): t0 = time.time() pt = Preprocessor() tr = Trainer() X_train, y_train = pt.get_data_labels() X_test, y_test = pt.get_data_labels("test") t1 = time.time() print(t1 - t0) clf = tr.svc(X_train, y_train) print(time.time() - t1) tr.save_model(clf, "mnist_svm.m") tester = Tester("mnist_svm.m") mt, score, repo = tester.clf_quality(X_test, y_test) print(mt, score, repo) return clf