def main(): # Use the input argument as path to file and ingest the file creating an all_rectangles object with the list of dictionaries try: # Check if there is an input argument, otherwise inform. path_to_file = sys.argv[1] print(path_to_file) try: # Depending on the error (if any), it will be infromed. # Initilize the ingestions all_rectangles = Ingest(path_to_file) # Loop over the list of all_rectangles and return them in a list of objects rects_list_obj = Rectangle.object_creator(all_rectangles._rects) # Produce the first set of unions unions = Rectangle.get_first_union(rects_list_obj) temp_union = unions # Loop that can handle as many unions there is while temp_union: union = Rectangle.get_union(rects_list_obj, temp_union) temp_union = union unions = unions + union # Serve object handles the prints serve_object = PrintRectangle(rects_list_obj, unions) serve_object.print_input() serve_object.print_output() except: print(all_rectangles.error) except: print("Please specify the path to the input json file")
def test_union(self): a = Rectangle(1, 3, 3, 7) b = Rectangle(2, 1, 3, 6) self.assertEqual(a.union(b), Rectangle(1, 1, 4, 9), 'overlapping') self.assertEqual(b.union(a), Rectangle(1, 1, 4, 9), 'overlapping reverse') self.assertEqual(a.union(a), a, 'equal')
def test_TPP(self): a = Rectangle(2, 2, 1, 1) b = Rectangle(1, 1, 2, 4) r = SpatialRelation(a, b) self.assertFalse(r.EQ(), "EQ") self.assertFalse(r.DC(), "DC") self.assertFalse(r.EC(), "EC") self.assertTrue(r.TPP(), "TPP") self.assertFalse(r.TPPi(), "TPPi") self.assertFalse(r.NTPP(), "NTPP") self.assertFalse(r.NTPPi(), "NTPPi") self.assertFalse(r.PO(), "PO")
def findLabelsWithinBounds(self, top, bottom, contour_approx_strength=0.05): """ Finds labels that are within the specified bounds """ min_contour_area = self.M * self.N / 100 max_contour_area = self.M * self.N / 6 _, contours, hierarchy = cv.findContours( self.img_eroded[top:bottom, :], cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) largest_contours = list( filter( lambda c: cv.contourArea(c) >= min_contour_area and cv. contourArea(c) <= max_contour_area, contours)) approximated_contours = [] for contour in largest_contours: epsilon = contour_approx_strength * cv.arcLength(contour, True) approx = cv.approxPolyDP(contour, epsilon, True) approximated_contours.append(approx) for contour in approximated_contours: x, y, w, h = cv.boundingRect(contour) y += top self.label_rectangles.append(Rectangle(x, y, w, h))
def get_all_bounding_boxes(self, image): # grab the frame dimensions and convert it to a blob (h, w) = image.shape[:2] start=time.time() blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) print('>>> cv2.dnn.blobFromImage took %.3f seconds' % (time.time() - start)) # pass the blob through the network and obtain the detections and predictions start=time.time() self.net.setInput(blob) print('>>> net.setInput(blob) took %.3f seconds' % (time.time() - start)) start=time.time() detections = self.net.forward() print('>>> dnn face_detector net.forward took %.3f seconds' % (time.time() - start)) start=time.time() bounding_boxes=[] for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is greater than the minimum confidence if confidence < self.confidence_threshold: continue # compute the (x, y)-coordinates of the bounding box for the object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") bounding_boxes.append(Rectangle(x1*scale, y1*scale, x2*scale, y2*scale)) bounding_boxes = sorted(bounding_boxes, key=lambda rect: rect.area()) print('>>> creating bounding_boxes from dnn face_detector\'s output took %.3f seconds' % (time.time() - start)) return bounding_boxes
def test_vertical_direction(self): a = Rectangle(1, 3, 4, 2) # center:(3, 4) b = Rectangle(2, 0, 4, 4) # center:(4, 2) r1 = SpatialRelation(a, b) # v = (1, -2) -> degree ~ 296 r2 = SpatialRelation(b, a) # v = (1, -2) -> degree ~ 116 self.assertFalse(r1.right()) self.assertFalse(r1.left()) self.assertFalse(r1.above()) self.assertTrue(r1.below()) self.assertFalse(r2.right()) self.assertFalse(r2.left()) self.assertTrue(r2.above()) self.assertFalse(r2.below())
def test_horizontal_direction(self): a = Rectangle(3, 1, 2, 4) # center:(4, 3) b = Rectangle(5, 2, 2, 4) # center:(6, 4) r1 = SpatialRelation(a, b) # v = (2, 1) -> degree ~ 26 r2 = SpatialRelation(b, a) # v = (-2, -1) -> degree ~ 206 self.assertTrue(r1.right()) self.assertFalse(r1.left()) self.assertFalse(r1.above()) self.assertFalse(r1.below()) self.assertFalse(r2.right()) self.assertTrue(r2.left()) self.assertFalse(r2.above()) self.assertFalse(r2.below())
def estimate(self, img = None, draw = False, color = (0, 255, 0), verbose = False): if self.initialized: num_estimated = int(round(self.persistent_weights.sum())) if num_estimated > 0: kmeans = KMeans(n_clusters = num_estimated).fit(self.persistent_states) estimated_targets = np.rint(kmeans.cluster_centers_).astype(int) new_tracks = [] label = 0 for et in estimated_targets: while (label in self.labels or label in self.current_labels): label+=1 target = Target(Rectangle(et[0], et[1], et[2], et[3]), label,\ (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) ) new_tracks.append(target) self.current_labels.append(label) label+=1 # affinity '''new_tracks_features = self.detector.get_features(img, new_tracks) affinity_matrix = appearance_affinity(self.tracks_features, new_tracks_features) *\ motion_affinity(self.tracks, new_tracks) * \ shape_affinity(self.tracks, new_tracks) affinity_matrix = 1./affinity_matrix row_ind, col_ind = linear_sum_assignment(affinity_matrix)''' ####### cost = cost_matrix(self.tracks, new_tracks) row_ind, col_ind = linear_sum_assignment(cost) for r,c in zip(row_ind, col_ind): new_tracks[c].color = self.tracks[r].color new_tracks[c].label = self.tracks[r].label self.tracks = new_tracks[:] #self.tracks_features = new_tracks_features[:] del self.current_labels[:] for track in self.tracks: self.current_labels.append(track.label) self.labels = self.labels.union(self.current_labels) if draw: for track in self.tracks: cv2.rectangle(img, (track.bbox.x, track.bbox.y), (track.bbox.x + track.bbox.width, track.bbox.y + track.bbox.height), track.color, 3) if verbose: print 'estimated targets: ' + str(num_estimated) return self.tracks
def read_groundtruth(self, path_to_groundtruth = ''): if path_to_groundtruth == '': exit() with open(path_to_groundtruth, 'rb') as f: num_frame = 1 for line in f: line = line.rstrip().split(',') xs = map(float, line[::2]) ys = map(float, line[1::2]) x = int(min(xs)) y = int(min(ys)) width = int(max(xs)) - x height = int(max(ys)) - y gt = Rectangle( x, y, width, height ) self.groundtruth[num_frame - 1] = gt num_frame+=1
def read_groundtruth(self, path_to_groundtruth = ''): if path_to_groundtruth == '': exit() with open(path_to_groundtruth, 'r') as f: for line in f: line = line.split(',') line[-1] = line[-1].strip() num_frame = int(line[0]) if num_frame - 1 not in self.groundtruth: self.groundtruth[num_frame - 1] = [] #print int(float(line[1])) x = int(float(line[2])) y = int(float(line[3])) width = int(float(line[4])) height = int(float(line[5])) gt = Rectangle(x, y, width, height) self.groundtruth[num_frame - 1].append(gt)
def test_equal(self): self.assertEqual(Rectangle(1, 2, 3, 4), Rectangle(1, 2, 3, 4)) self.assertNotEqual(Rectangle(10, 2, 3, 4), Rectangle(1, 2, 3, 4)) self.assertNotEqual(Rectangle(1, 20, 3, 4), Rectangle(1, 2, 3, 4)) self.assertNotEqual(Rectangle(1, 2, 30, 4), Rectangle(1, 2, 3, 4)) self.assertNotEqual(Rectangle(1, 2, 3, 40), Rectangle(1, 2, 3, 4))
def test_intersect(self): a = Rectangle(1, 3, 3, 7) b = Rectangle(2, 1, 3, 6) c = Rectangle(5, 3, 3, 6) d = Rectangle(5, 0, 3, 2) self.assertEqual(a.signed_intersect(b), Rectangle(2, 3, 2, 4), 'overlapping') self.assertEqual(b.signed_intersect(a), Rectangle(2, 3, 2, 4), 'overlapping reverse') self.assertEqual(a.signed_intersect(a), a, 'equal') self.assertEqual(a.signed_intersect(c), Rectangle(5, 3, -1, 6), 'no intersect, x negative') self.assertEqual(a.signed_intersect(d), Rectangle(5, 3, -1, -1), 'no intersect, x amd y negative')
def test_xmax_ymax(self): a = Rectangle(2, 3, 3, 5) self.assertEqual(a.xmax, 5) self.assertEqual(a.ymax, 8)
def test_area(self): a = Rectangle(2, 3, 3, 5) self.assertEqual(a.area(), 15)
def track(self, label, debug=False): """ Takes a label and tracks it in a video or webcam stram. Displays the video with the tracked objects. Returns false if the label is lost """ prev_speed = 0 count_frames_speed_0 = 0 mv = MoveRobot() # loop over frames from the video stream while True: # grab the current frame, then handle if we are using a # VideoStream or VideoCapture object """ frame = self.vs.read() frame = frame[1] if not self.webCam else frame """ if count_frames_speed_0 >= 10: break frame, boundary_lines = self.video_stream.read() # check to see if we have reached the end of the stream if frame is None: break # resize the frame (so we can process it faster) and grab the # frame dimensions frame = imutils.resize(frame, width=500) if not self.webCam else frame (H, W) = frame.shape[:2] # Start tracking the given label if self.initBB is None and label is not None: self.initBB = label # start OpenCV object tracker using the supplied bounding box # coordinates, then start the FPS throughput estimator as well self.tracker.init(frame, self.initBB) self.fps = FPS().start() label = None # check to see if we are currently tracking an object if self.initBB is not None: # grab the new bounding box coordinates of the object (success, box) = self.tracker.update(frame) # check to see if the tracking was a success if success: (x, y, w, h) = [int(v) for v in box] # Get the spine boundary lines label_rectangle = Rectangle(x, y, w, h) left_spine_bound, right_spine_bound = findSpineBoundaries(label_rectangle, boundary_lines) # Plot the lines if debug and left_spine_bound: left_spine_bound.plotOnImage(frame, thickness=2) if debug and right_spine_bound: right_spine_bound.plotOnImage(frame, thickness=2) distance_to_middle = 0 # If both spine bounds are in frame and found if (right_spine_bound is not None) and (left_spine_bound is not None): # Adjust the position of the robot # Find a point on the spine boundaries which is in the middle of the frame height left_spine_coordinate = left_spine_bound.calculateXgivenY(H/2) right_spine_coordinate = right_spine_bound.calculateXgivenY(H/2) # Find a point on the middle of the spine spine_midpoint = left_spine_coordinate + (right_spine_coordinate - left_spine_coordinate) / 2 # Distance from the point on the middle of the spine to the middle of the frame # Range 100 if spine is on the very left of the frame to -100 on the right distance_to_middle = int(( (W/2 - spine_midpoint) * 100 ) / (W/2)) # If only one spine bound is found if (right_spine_bound is None) and (left_spine_bound is not None): # Distance from the point on the middle of the spine to the middle of the frame # Range 100 if spine is on the very left of the frame to -100 on the right left_spine_coordinate = left_spine_bound.calculateXgivenY(H/2) distance_to_middle = int(( (W/2 - left_spine_coordinate) * 100 ) / (W/2)) if (right_spine_bound is not None) and (left_spine_bound is None): # Distance from the point on the middle of the spine to the middle of the frame # Range 100 if spine is on the very left of the frame to -100 on the right right_spine_coordinate = right_spine_bound.calculateXgivenY(H/2) distance_to_middle = int(( (W/2 - right_spine_coordinate) * 100 ) / (W/2)) if (right_spine_bound is not None) or (left_spine_bound is not None): if abs(distance_to_middle < 20): abs_speed = 0.005 else: abs_speed = 0.001 if abs(distance_to_middle) < 5: speed = 0 count_frames_speed_0 += 1 elif distance_to_middle < 0: speed = abs_speed count_frames_speed_0 = 0 else: speed = -abs_speed count_frames_speed_0 = 0 if speed != prev_speed: print("Moving with speed " + str(speed) + " !") Thread(target=mv.setSpeed, args=(speed,)).start() prev_speed = speed # Draw the rectangle around the label if debug: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) #else: #return success # update the FPS counter self.fps.update() self.fps.stop() print("FPS", "{:.2f}".format(self.fps.fps())) # initialize the set of information we'll be displaying on # the frame info = [ ("Tracker", self.trackerType), ("Success", "Yes" if success else "No"), ("FPS", "{:.2f}".format(self.fps.fps())), ] # loop over the info tuples and draw them on our frame if debug: for (i, (k, v)) in enumerate(info): text = "{}: {}".format(k, v) cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) # show the output frame if debug: cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break mv.shutDown() # if we are using a webcam, release the pointer if self.webCam: #self.vs.stop() self.video_stream.stop() # otherwise, release the file pointer else: self.vs.release() # close all windows cv2.destroyAllWindows() return True