parser.add_argument('--val-label-path', type=str, default='/path/to/VesselNN/train/label', metavar='N', help='Validation label path') parser.add_argument('--validate', action='store_true', help='validate') # checking point parser.add_argument('--resume', type=str, default=None, help='put the path to resuming file if needed') parser.add_argument('--checkname', type=str, default='VesselNN_Unsupervised', help='set the checkpoint name') args = parser.parse_args() # Define Saver saver = Saver(args) saver.save_experiment_config() # Define Tensorboard Summary summary = TensorboardSummary(saver.experiment_dir) writer = summary.create_summary() # Data dataset = Directory_Image_Train(images_path=args.train_images_path, labels_path=args.train_labels_path, data_shape=(32, 128, 128), lables_shape=(32, 128, 128), range_norm=args.range_norm) dataloader = DataLoader(dataset, batch_size=torch.cuda.device_count() * args.batch_size, shuffle=True, num_workers=2) # Data - validation dataset_val = Single_Image_Eval(image_path=args.val_image_path,
class Trainer(object): def __init__(self, args): self.args = args # Define Saver self.saver = Saver(args) self.saver.save_experiment_config() # Define Tensorboard Summary self.summary = TensorboardSummary(args.logdir) self.writer = self.summary.create_summary() # Define Dataloader kwargs = {'num_workers': args.workers, 'pin_memory': True} dltrain = DLDataset('trainval', "./data/pascal_voc_seg/tfrecord/") dlval = DLDataset('val', "./data/pascal_voc_seg/tfrecord/") # dltrain = DLDataset('trainval', "./data/pascal_voc_seg/VOCdevkit/VOC2012/") # dlval = DLDataset('val', "./data/pascal_voc_seg/VOCdevkit/VOC2012/") self.train_loader = DataLoader(dltrain, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) self.val_loader = DataLoader(dlval, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # Define network model = Deeplab() train_params = [{ 'params': model.get_1x_lr_params(), 'lr': args.lr }, { 'params': model.get_10x_lr_params(), 'lr': args.lr * 10 }] # Define Optimizer optimizer = torch.optim.SGD(train_params, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov) # Define Criterion # whether to use class balanced weights self.criterion = nn.CrossEntropyLoss(ignore_index=255).cuda() self.model, self.optimizer = model, optimizer # Define Evaluator self.evaluator = Evaluator(21) # Define lr scheduler self.scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer=optimizer) # Using cuda # if args.cuda: # self.model = torch.nn.DataParallel(self.model) self.model = self.model.cuda() # Resuming checkpoint self.best_pred = 0.0 if args.resume is not None: if not os.path.isfile(args.resume): raise RuntimeError("=> no checkpoint found at '{}'".format( args.resume)) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] if args.cuda: self.model.module.load_state_dict(checkpoint['state_dict']) else: self.model.load_state_dict(checkpoint['state_dict']) if not args.ft: self.optimizer.load_state_dict(checkpoint['optimizer']) self.best_pred = checkpoint['best_pred'] print("=> loaded checkpoint '{}' (epoch {})".format( args.resume, checkpoint['epoch'])) # Clear start epoch if fine-tuning if args.ft: args.start_epoch = 0 def training(self, epoch): train_loss = 0.0 self.model.train() tbar = tqdm(self.train_loader) num_img_tr = len(self.train_loader) for i, (image, target) in enumerate(tbar): if self.args.cuda: image, target = image.cuda(), target.cuda() self.optimizer.zero_grad() output = self.model(image) loss = self.criterion(output, target.long()) loss.backward() self.optimizer.step() train_loss += loss.item() tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1))) self.writer.add_scalar('train/total_loss_iter', loss.item(), i + num_img_tr * epoch) # Show 10 * 3 inference results each epoch # if i % (num_img_tr // 10) == 0: if i % 10 == 0: global_step = i + num_img_tr * epoch self.summary.visualize_image(self.writer, self.args.dataset, image, target, output, global_step) self.scheduler.step(train_loss) self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch) print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0])) print('Loss: %.3f' % train_loss) if self.args.no_val: # save checkpoint every epoch is_best = False self.saver.save_checkpoint( { 'epoch': epoch + 1, 'state_dict': self.model.module.state_dict(), 'optimizer': self.optimizer.state_dict(), 'best_pred': self.best_pred, }, is_best) def validation(self, epoch): self.model.eval() self.evaluator.reset() tbar = tqdm(self.val_loader, desc='\r') test_loss = 0.0 for i, (image, target) in enumerate(tbar): if self.args.cuda: image, target = image.cuda(), target.cuda() with torch.no_grad(): output = self.model(image) loss = self.criterion(output, target.long()) test_loss += loss.item() tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1))) pred = output.data.cpu().numpy() target = target.cpu().numpy() pred = np.argmax(pred, axis=1) # Add batch sample into evaluator self.evaluator.add_batch(target, pred) # Fast test during the training Acc = self.evaluator.Pixel_Accuracy() Acc_class = self.evaluator.Pixel_Accuracy_Class() mIoU = self.evaluator.Mean_Intersection_over_Union() FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union() self.writer.add_scalar('val/total_loss_epoch', test_loss, epoch) self.writer.add_scalar('val/mIoU', mIoU, epoch) self.writer.add_scalar('val/Acc', Acc, epoch) self.writer.add_scalar('val/Acc_class', Acc_class, epoch) self.writer.add_scalar('val/fwIoU', FWIoU, epoch) print('Validation:') print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0])) print("Acc:{}, Acc_class:{}, mIoU:{}, fwIoU: {}".format( Acc, Acc_class, mIoU, FWIoU)) print('Loss: %.3f' % test_loss) new_pred = mIoU if new_pred > self.best_pred: is_best = True self.best_pred = new_pred self.saver.save_checkpoint( { 'epoch': epoch + 1, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'best_pred': self.best_pred, }, is_best)