Exemple #1
0
def fast_evaluate(args, basedir, contents, idx=0):
    # basedir to save the data
    style_model = Net(ngf=args.ngf)
    style_model.load_state_dict(torch.load(args.model), False)
    style_model.eval()
    if args.cuda:
        style_model.cuda()

    style_loader = StyleLoader(args.style_folder,
                               args.style_size,
                               cuda=args.cuda)

    for content_image in contents:
        idx += 1
        content_image = utils.tensor_load_rgbimage(content_image,
                                                   size=args.content_size,
                                                   keep_asp=True).unsqueeze(0)
        if args.cuda:
            content_image = content_image.cuda()
        content_image = Variable(utils.preprocess_batch(content_image))

        for isx in range(style_loader.size()):
            style_v = Variable(style_loader.get(isx).data)
            style_model.setTarget(style_v)
            output = style_model(content_image)
            filename = os.path.join(basedir, "{}_{}.png".format(idx, isx + 1))
            utils.tensor_save_bgrimage(output.data[0], filename, args.cuda)
            print(filename)
Exemple #2
0
def run_demo(args, mirror=False):
    style_model = Net(ngf=args.ngf)
    style_model.load_state_dict(torch.load(args.model))
    style_model.eval()
    if args.cuda:
        style_loader = StyleLoader(args.style_folder, args.style_size)
        style_model.cuda()
    else:
        style_loader = StyleLoader(args.style_folder, args.style_size, False)

    # Define the codec and create VideoWriter object
    height = args.demo_size
    width = int(4.0 / 3 * args.demo_size)
    swidth = int(width / 4)
    sheight = int(height / 4)
    if args.record:
        fourcc = cv2.VideoWriter_fourcc('F', 'M', 'P', '4')
        out = cv2.VideoWriter('output.mp4', fourcc, 20.0, (2 * width, height))
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)
    key = 0
    idx = 0
    while True:
        # read frame
        idx += 1
        ret_val, img = cam.read()
        if mirror:
            img = cv2.flip(img, 1)
        cimg = img.copy()
        img = np.array(img).transpose(2, 0, 1)
        # changing style
        if idx % 20 == 1:
            style_v = style_loader.get(int(idx / 20))
            style_v = Variable(style_v.data)
            style_model.setTarget(style_v)

        img = torch.from_numpy(img).unsqueeze(0).float()
        if args.cuda:
            img = img.cuda()

        img = Variable(img)
        img = style_model(img)

        if not args.cuda:
            simg = style_v.cpu().data[0].numpy()
            img = img.cpu().clamp(0, 255).data[0].numpy()
        else:
            simg = style_v.data().numpy()
            img = img.clamp(0, 255).data[0].numpy()
        img = img.transpose(1, 2, 0).astype('uint8')
        simg = simg.transpose(1, 2, 0).astype('uint8')

        # display
        simg = cv2.resize(simg, (swidth, sheight),
                          interpolation=cv2.INTER_CUBIC)
        cimg[0:sheight, 0:swidth, :] = simg
        img = np.concatenate((cimg, img), axis=1)
        cv2.imshow('MSG Demo', img)
        # cv2.imwrite('stylized/%i.jpg'%idx,img)
        key = cv2.waitKey(1)
        if args.record:
            out.write(img)

        # Hit 'q' on the keyboard to quit!
        if key & 0xFF == ord('q'):
            break

    cam.release()
    if args.record:
        out.release()
    cv2.destroyAllWindows()
Exemple #3
0
def run_demo(args, mirror=False):
    style_model = Net(ngf=args.ngf)
    input('style_model =')
    style_model.load_state_dict(torch.load(args.model))
    input('style_model.load')
    style_model.eval()
    if args.cuda:
        style_loader = StyleLoader(args.style_folder, args.style_size)
        style_model.cuda()
    else:
        style_loader = StyleLoader(args.style_folder, args.style_size, False)
    # Define the codec and create VideoWriter object
    height = 480
    width = 640
    fps = 24

    #	cam = cv2.VideoCapture(0)
    #	cam.set(3, width)
    #	cam.set(4, height)

    video = cv2.VideoCapture('tvMesh2.mp4')
    video.set(3, width)
    video.set(4, height)
    video.set(5, fps)
    #	print(video.get(5))

    if args.record:
        fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
        out = cv2.VideoWriter('breakWhiteConv.mov', fourcc, 24, (640, 480),
                              True)

    key = 0
    idx = 0
    counter = 1

    while True:
        # read frame
        idx += 1
        ret_val, frame = video.read()
        #	ret_val, frame = cam.read()

        counter += 1

        if counter == video.get(7):
            video.set(1, 0)
            counter = 0

        img = np.array(frame).transpose(2, 0, 1)
        # changing style
        if idx % 20 == 1:
            style_v = style_loader.get(int(idx / 20))
            style_v = Variable(style_v.data)
            style_model.setTarget(style_v)

        img = torch.from_numpy(img).unsqueeze(0).float()
        if args.cuda:
            img = img.cuda()

        img = Variable(img)
        img = style_model(img)

        if args.cuda:
            #	simg = style_v.cpu().data[0].numpy()
            img = img.cpu().clamp(0, 255).data[0].numpy()
        else:
            #	simg = style_v.data().numpy()
            img = img.clamp(0, 255).data[0].numpy()
        img = img.transpose(1, 2, 0).astype('uint8')

        # display
        #		simg = cv2.resize(simg,(swidth, sheight), interpolation = cv2.INTER_CUBIC)
        #		cimg[0:sheight,0:swidth,:]=simg
        #		fimg = np.concatenate((cimg,img),axis=1)

        if args.record:
            out.write(img)

        cv2.imshow('MSG Demo', img)

        #cv2.imwrite('stylized/%i.jpg'%idx,img)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cam.release()
    if args.record:
        out.release()
    cv2.destroyAllWindows()
Exemple #4
0
def run_demo(args, mirror=False):
    #  style_model = Net(ngf=args.ngf)
    #  style_model.load_state_dict(torch.load(args.model))

    model_dict = torch.load(args.model)
    model_dict_clone = model_dict.copy()  # We can't mutate while iterating

    for key, value in model_dict_clone.items():
        if key.endswith(('running_mean', 'running_var')):
            del model_dict[key]

    style_model = Net(ngf=args.ngf)
    style_model.load_state_dict(model_dict, False)

    style_model.eval()
    if args.cuda:
        style_loader = StyleLoader(args.style_folder, args.style_size)
        style_model.cuda()
    else:
        style_loader = StyleLoader(args.style_folder, args.style_size, False)

    # Define the codec and create VideoWriter object
    height = args.demo_size
    width = int(4.0 / 3 * args.demo_size)
    swidth = int(width / 4)
    sheight = int(height / 4)
    if args.record:
        fourcc = cv2.VideoWriter_fourcc('F', 'M', 'P', '4')
        out = cv2.VideoWriter('output.mp4', fourcc, 20.0, (2 * width, height))
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)
    key = 0
    idx = 0
    while True:
        # read frame
        idx += 1
        ret_val, img = cam.read()
        if mirror:
            img = cv2.flip(img, 1)
        cimg = img.copy()
        img = np.array(img).transpose(2, 0, 1)
        # changing style
        if idx % 10 == 1:
            if int(idx / 10) == 21:
                break
            style_v = style_loader.get(int(idx / 10))
            print('style version ----------------> ', idx)
            style_v = Variable(style_v.data)
            #  print('style change to ', style_v)
            style_model.setTarget(style_v)

        img = torch.from_numpy(img).unsqueeze(0).float()
        if args.cuda:
            img = img.cuda()

        img = Variable(img)

        ## handle image
        img = style_model(img)

        if args.cuda:
            simg = style_v.cpu().data[0].numpy()
            img = img.cpu().clamp(0, 255).data[0].numpy()
        else:
            simg = style_v.data().numpy()
            img = img.clamp(0, 255).data[0].numpy()
        img = img.transpose(1, 2, 0).astype('uint8')
        simg = simg.transpose(1, 2, 0).astype('uint8')

        # display
        simg = cv2.resize(simg, (swidth, sheight),
                          interpolation=cv2.INTER_CUBIC)
        cimg[0:sheight, 0:swidth, :] = simg
        img = np.concatenate((cimg, img), axis=1)

        cv2.imshow('MSG Demo', img)
        #cv2.imwrite('stylized/%i.jpg'%idx,img)
        key = cv2.waitKey(1)
        if args.record:
            out.write(img)
        if key == 27:
            break
    cam.release()
    if args.record:
        out.release()
    cv2.destroyAllWindows()
Exemple #5
0
def run_demo(cuda, record):
	if cuda:
		ctx = mx.gpu(0); os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
	else:
		ctx = mx.cpu(0)
	model = 'models/21styles.params'
	ngf = 128
	style_size = 512
	style_folder = 'images/styles/'
	demo_size = 480	# demo window height
	mirror = False
	style_loader = StyleLoader(style_folder, style_size, ctx)
	style_model = Net(ngf=ngf)
	style_model.load_parameters(model, ctx=ctx)
	# Define the codec and create VideoWriter object
	height = demo_size
	width = int(4.0/3*demo_size)
	swidth = int(width/4); sheight = int(height/4)
	if record:
		vDir, vFile = './video/', 'output21.mp4'
		vPath = vDir + vFile
		try:
			if not os.path.exists(vDir):
				os.makedirs(vDir)    
		except OSError as e:  print(e); sys.exit(1)                
		fourcc = cv2.VideoWriter_fourcc('m','p','4','v')
		out = cv2.VideoWriter(vPath, fourcc, 20.0, (2*width, height))
	cam = cv2.VideoCapture(0)
	cam.set(3, width); cam.set(4, height)
	key, idx = 0, 0
	wName = 'STYLIZED VIDEO  W:'+ str(width) +'  H:'+ str(height)
	cv2.namedWindow(wName,cv2.WINDOW_NORMAL)
	cv2.resizeWindow(wName, width*2, height)
	while True:
		# read frame
		idx += 1
		ret_val, img = cam.read()
		if mirror: 
			img = cv2.flip(img, 1)
		cimg = img.copy()
		img = np.array(img).transpose(2, 0, 1).astype(float)
		img = F.expand_dims(mx.nd.array(img, ctx=ctx), 0)
		# changing styles
		if idx%20 == 1:
			style_v = style_loader.get(int(idx/20))
			style_model.set_target(style_v)
		img = style_model(img)

		simg = np.squeeze(style_v.asnumpy())
		simg = simg.transpose(1, 2, 0).astype('uint8')
		img = F.clip(img[0], 0, 255).asnumpy()
		img = img.transpose(1, 2, 0).astype('uint8')

		# display
		simg = cv2.resize(simg,(swidth, sheight), interpolation = cv2.INTER_CUBIC)
        simg = cv2.cvtColor(simg, cv2.COLOR_BGR2RGB)
		cimg[0:sheight,0:swidth,:]=simg
		img = np.concatenate((cimg, cv2.COLOR_BGR2RGB)),axis=1)
		cv2.imshow(wName, img)
		key = cv2.waitKey(1)
		if record:
			out.write(img)
		if key == 27: # Esc
			break
Exemple #6
0
def run_demo():
	style_model = Net(ngf=this_ngf)
	model_dict = torch.load(model21)
	model_dict_clone = model_dict.copy()

	for key, value in model_dict_clone.items(): #v0.4
		if key.endswith(('running_mean', 'running_var')): #v0.4
			del model_dict[key]	

	style_model.load_state_dict(model_dict, True)

	style_model.eval()
	#if cuda:
	style_loader = StyleLoader(style_folder, style_size)
	style_model.cuda()
	#else:
	#	style_loader = StyleLoader(style_folder, style_size, False)

	# Define the codec and create VideoWriter object
	height =  demo_size
	width = int(4.0/3*demo_size)
	swidth = int(width/4)
	sheight = int(height/4)
	#if record:
	#	fourcc = cv2.VideoWriter_fourcc('F','M','P','4')
	#	out = cv2.VideoWriter('output.mp4', fourcc, 20.0, (2*width, height))
	cam = cv2.VideoCapture(0)
	cam.set(3, width)
	cam.set(4, height)
	key = 0
	idx = 0
	while True:
		# read frame
		idx += 1
		ret_val, img = cam.read()
		#if mirror: 
		#	img = cv2.flip(img, 1)
		#cimg = img.copy()###############################OR-CAM
		img = np.array(img).transpose(2, 0, 1)
		# changing style 
		if idx%20 == 1:
			style_v = style_loader.get(int(idx/20))
			style_v = Variable(style_v.data)
			style_model.setTarget(style_v)

		img=torch.from_numpy(img).unsqueeze(0).float()
		#if cuda:
		img=img.cuda()
		img = Variable(img)
		img = style_model(img)
		#print(type(img))
		#if cuda:
			#simg = style_v.cpu().data[0].numpy()
		img=img.clamp(0, 255).data[0].cpu().detach().numpy()

		##x_gpu = cp.array()
		##cp.asnumpy(x_gpu)
		
		#img=img.data
		#img=img.numpy()
		#print(type(img))
		#else:
		#	simg = style_v.data.numpy()
		#	img = img.clamp(0, 255).data[0].numpy()
		img = img.transpose(1, 2, 0).astype('uint8')
		#simg = simg.transpose(1, 2, 0).astype('uint8')
		
		# display
		#simg = cv2.resize(simg,(swidth, sheight), interpolation = cv2.INTER_CUBIC)
		#cimg[0:sheight,0:swidth,:]=simg
		#img = np.concatenate((cimg,img),axis=1)
		img = cv2.resize(img, None, fx=3.0,fy=3.0, interpolation=cv2.INTER_LINEAR)
		kernel = np.ones((5,5),np.float32)/25
		img = cv2.filter2D(img,-1,kernel)
		cv2.imshow('MSG Demo', img)

		#cv2.imwrite('stylized/%i.jpg'%idx,img)
		key = cv2.waitKey(1)
		#if args.record:
		#	out.write(img)
		if key == 27: 
			break

	cam.release()
	#if args.record:
	#	out.release()
	cv2.destroyAllWindows()
Exemple #7
0
def run_demo(cuda, record, vfile):
    model = 'models/21styles.params'
    ngf = 128
    style_size = 512
    style_folder = 'images/styles/'
    mirror = False
    vDir = './video/'
    vPath = vDir + vfile
    oFile = 'output21-' + vfile
    wM, hM = 640, 480
    if cuda:
        ctx = mx.gpu(0)
        os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
    else:
        ctx = mx.cpu(0)
    style_loader = StyleLoader(style_folder, style_size, ctx)
    style_model = Net(ngf=ngf)
    style_model.load_parameters(model, ctx=ctx)
    metadata = ffprobe(vPath)
    fps = metadata["video"]["@avg_frame_rate"]
    #	print(json.dumps(metadata["video"], indent=4))
    w, h = int(metadata["video"]["@width"]), int(metadata["video"]["@height"])
    downsize = h > hM
    if downsize:
        w = 2 * int(w * hM / h / 2)
        h = hM


#	downsize = w > wM
#	if downsize :
#		h = 2 * int(h * wM / w / 2); w = wM
    swidth = int(w / 4)
    sheight = int(h / 4)
    wName = vfile + '  STYLIZED VIDEO   fps:' + fps + '  W:' + str(
        w) + '  H:' + str(h)
    if record:
        out = FFmpegWriter(vDir + oFile,
                           inputdict={
                               '-r': str(fps),
                               '-s': '{}x{}'.format(2 * w, h)
                           },
                           outputdict={
                               '-r': str(fps),
                               '-c:v': 'h264'
                           })
    key, idx = 0, 0
    cv2.namedWindow(wName, cv2.WINDOW_NORMAL)
    cv2.resizeWindow(wName, 2 * w, h)
    for img in vreader(vPath):
        idx += 1
        if downsize:
            img = cv2.resize(img, (w, h), interpolation=cv2.INTER_AREA)
        if mirror:
            img = cv2.flip(img, 1)
        cimg = img.copy()
        img = np.array(img).transpose(2, 0, 1).astype(float)
        img = F.expand_dims(mx.nd.array(img, ctx=ctx), 0)
        # changing styles
        if idx % 50 == 1:
            style_v = style_loader.get(int(idx / 20))
            style_model.set_target(style_v)
        img = style_model(img)

        simg = np.squeeze(style_v.asnumpy())
        simg = simg.transpose(1, 2, 0).astype('uint8')
        img = F.clip(img[0], 0, 255).asnumpy()
        img = img.transpose(1, 2, 0).astype('uint8')

        # display
        simg = cv2.resize(simg, (swidth, sheight),
                          interpolation=cv2.INTER_CUBIC)
        cimg[0:sheight, 0:swidth, :] = simg
        img = np.concatenate((cimg, cv2.cvtColor(img, cv2.COLOR_BGR2RGB)),
                             axis=1)
        if record:
            out.writeFrame(img)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        cv2.imshow(wName, img)
        key = cv2.waitKey(1)
        if key == 27:  # Esc
            break
    if record:
        out.close()
        transferAudio(vPath, vDir, oFile)
        print("Done OK. Created Stylised Video file", vDir + oFile)
        print("fps :", fps, "    W:", w, " H:", h)
    cv2.destroyAllWindows()
def run_demo(args, mirror=False):
    #  style_model = Net(ngf=args.ngf)
    #  style_model.load_state_dict(torch.load(args.model))

    model_dict = torch.load(args.model)
    model_dict_clone = model_dict.copy()  # We can't mutate while iterating

    for key, value in model_dict_clone.items():
        if key.endswith(('running_mean', 'running_var')):
            del model_dict[key]

    style_model = Net(ngf=args.ngf)
    style_model.load_state_dict(model_dict, False)

    style_model.eval()
    if args.cuda:
        style_loader = StyleLoader(args.style_folder, args.style_size)
        style_model.cuda()
    else:
        style_loader = StyleLoader(args.style_folder, args.style_size, False)

    # Define the codec and create VideoWriter object
    height = args.demo_size
    width = int(4.0 / 3 * args.demo_size)
    swidth = int(width / 4)
    sheight = int(height / 4)

    #lxy
    if args.video == '':
        videofile = '/home/xyliu/Videos/sports/dance.mp4'
    else:
        videofile = args.video

    print('handle video\'s path is', videofile)
    cam = cv2.VideoCapture(videofile)

    video_length = int(cam.get(cv2.CAP_PROP_FRAME_COUNT))
    ret_val, img = cam.read()
    i = 1

    ## output name
    if args.output == '':
        dirname = os.path.dirname(videofile)
        basename = os.path.basename(videofile)
        output_name = os.path.join(dirname, 'tra_' + basename)
    else:
        output_name = args.output

    if args.record:
        fshape = img.shape
        fheight, fwidth = fshape[:2]
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        #  out = cv2.VideoWriter('new_output.mp4', fourcc, 20.0, (2*width, height))
        out = cv2.VideoWriter(output_name, fourcc, 20.0, (fwidth * 2, fheight))

    cam.set(3, width)
    cam.set(4, height)
    key = 0
    idx = 0
    while (cam.isOpened()) and ret_val == True and i < video_length:
        # read frame
        idx += 1
        ret_val, img = cam.read()
        i += 1
        if mirror:
            img = cv2.flip(img, 1)
        cimg = img.copy()
        img = np.array(img).transpose(2, 0, 1)

        # changing style
        if idx % 20 == 1:
            style_v = style_loader.get(int(idx / 20))
            style_v = Variable(style_v.data)
            #  print('style change to ', style_v)
            style_model.setTarget(style_v)

        img = torch.from_numpy(img).unsqueeze(0).float()
        if args.cuda:
            img = img.cuda()

        img = Variable(img)

        ## handle image
        img = style_model(img)

        if args.cuda:
            simg = style_v.cpu().data[0].numpy()
            img = img.cpu().clamp(0, 255).data[0].numpy()
        else:
            simg = style_v.data().numpy()
            img = img.clamp(0, 255).data[0].numpy()
        img = img.transpose(1, 2, 0).astype('uint8')
        simg = simg.transpose(1, 2, 0).astype('uint8')

        # display
        simg = cv2.resize(simg, (swidth, sheight),
                          interpolation=cv2.INTER_CUBIC)
        cimg[0:sheight, 0:swidth, :] = simg
        img = np.concatenate((cimg, img), axis=1)
        cv2.imshow('MSG Demo', img)
        #cv2.imwrite('stylized/%i.jpg'%idx,img)
        key = cv2.waitKey(1)
        if args.record:
            out.write(img)
        if key == 27:
            break
    cam.release()
    if args.record:
        out.release()
    cv2.destroyAllWindows()
    print('video save in ', output_name)
Exemple #9
0
def run_demo(args, mirror=False):
	style_model = Net(ngf=args.ngf)
	# loading trained model specified by user
	style_model.load_state_dict(torch.load(args.model))
	style_model.eval()
	# processing the style specified and applying it to image
	if args.cuda:
		style_loader = StyleLoader(args.style_folder, args.style_size)
		style_model.cuda()
	else:
		style_loader = StyleLoader(args.style_folder, args.style_size, False)

	# Define the codec and create VideoWriter object
	# creating another adjacent video
	height =  args.demo_size
	width = int(4.0/3*args.demo_size)
	swidth = int(width/4)
	sheight = int(height/4)
	# if I put option record, it will save my video
	if args.record:
		fourcc = cv2.VideoWriter_fourcc('F','M','P','4')
		out = cv2.VideoWriter('output.mp4', fourcc, 20.0, (2*width, height))
	# capture video camera
	cam = cv2.VideoCapture(0)
	cam.set(3, width)
	cam.set(4, height)
	key = 0
	idx = 0
	# read it frame by frame, and flip image to other side and apply style  
	while True:
		# read frame
		idx += 1
		ret_val, img = cam.read()
		if mirror:
			img = cv2.flip(img, 1)
		cimg = img.copy()
		img = np.array(img).transpose(2, 0, 1)
		# changing style
		if idx%20 == 1:
			style_v = style_loader.get(int(idx/20))
			style_v = Variable(style_v.data)
			style_model.setTarget(style_v)

		img=torch.from_numpy(img).unsqueeze(0).float()
		if args.cuda:
			img=img.cuda()

		img = Variable(img)
		img = style_model(img)

		if not args.cuda:
			simg = style_v.cpu().data[0].numpy()
			img = img.cpu().clamp(0, 255).data[0].numpy()
		else:
			simg = style_v.data().numpy()
			img = img.clamp(0, 255).data[0].numpy()
		img = img.transpose(1, 2, 0).astype('uint8')
		simg = simg.transpose(1, 2, 0).astype('uint8')

		# display
		simg = cv2.resize(simg,(swidth, sheight), interpolation = cv2.INTER_CUBIC)
		cimg[0:sheight,0:swidth,:]=simg
		img = np.concatenate((cimg,img),axis=1)
		cv2.imshow('MSG Demo', img)
		#cv2.imwrite('stylized/%i.jpg'%idx,img)
		key = cv2.waitKey(1)
		if args.record:
			out.write(img)
		if key == 27:
			break
	cam.release()
	if args.record:
		out.release()
	cv2.destroyAllWindows()