Exemple #1
0
    def initialize(self, img, detections):
        if len(detections) > 0:
            #self.detector = Resnet()
            (self.img_height, self.img_width, self.n_channels) = img.shape
            dPosX = stats.norm( loc = 0.0, scale = self.POS_STD_X )
            dPosY = stats.norm( loc = 0.0, scale = self.POS_STD_Y )
            dWidth = stats.norm( loc = 0.0, scale = self.SCALE_STD_WIDTH )
            dHeight = stats.norm( loc = 0.0, scale = self.SCALE_STD_HEIGHT )

            self.persistent_states = np.empty((self.particles_batch * len(detections), self.DIM), dtype = int)
            idx = 0
            for det in detections:
                self.persistent_states[idx*self.particles_batch:(idx+1)*self.particles_batch,0] = det.bbox.x + dPosX.rvs(self.particles_batch)
                self.persistent_states[idx*self.particles_batch:(idx+1)*self.particles_batch,1] = det.bbox.y + dPosY.rvs(self.particles_batch)
                self.persistent_states[idx*self.particles_batch:(idx+1)*self.particles_batch,2] = det.bbox.width + dWidth.rvs(self.particles_batch)
                self.persistent_states[idx*self.particles_batch:(idx+1)*self.particles_batch,3] = det.bbox.height + dHeight.rvs(self.particles_batch)
                
                target = Target(det.bbox, idx, (random.randint(0,255), random.randint(0,255), random.randint(0,255)))
                self.tracks.append(target)
                self.current_labels.append(idx)
                self.labels.add(idx)
                idx+=1
            self.persistent_weights = np.ones((self.particles_batch * len(detections)), dtype = float) * ( 1.0/float(self.particles_batch))

            #self.tracks_features = self.detector.get_features(img, self.tracks)
            #self.birth_model = detections
            self.initialized = True
def create_source_abi_reference_dumps_for_all_products(args):
    """Create reference ABI dumps for all specified products."""

    num_processed = 0

    for product in args.products:
        build_vars = get_build_vars_for_product(
            ['PLATFORM_VNDK_VERSION', 'BOARD_VNDK_VERSION', 'BINDER32BIT'],
            product, args.build_variant)

        platform_vndk_version = build_vars[0]
        board_vndk_version = build_vars[1]
        if build_vars[2] == 'true':
            binder_bitness = '32'
        else:
            binder_bitness = '64'

        chosen_vndk_version = choose_vndk_version(args.version,
                                                  platform_vndk_version,
                                                  board_vndk_version)

        targets = [Target(True, product), Target(False, product)]
        # Remove reference ABI dumps specified in `args.libs` (or remove all of
        # them if none of them are specified) so that we may build these
        # libraries successfully.
        remove_references_for_all_arches_and_variants(args.ref_dump_dir,
                                                      chosen_vndk_version,
                                                      binder_bitness, targets,
                                                      args.libs)

        if not args.no_make_lib:
            # Build all the specified libs, or build `findlsdumps` if no libs
            # are specified.
            make_libs_for_product(args.libs, product, args.build_variant,
                                  platform_vndk_version, targets)

        lsdump_paths = read_lsdump_paths(product,
                                         args.build_variant,
                                         platform_vndk_version,
                                         targets,
                                         build=False)

        num_processed += create_source_abi_reference_dumps(
            args, chosen_vndk_version, binder_bitness, lsdump_paths, targets)

    return num_processed
Exemple #3
0
    def __init__(self):

        # ROS Topics:
        rospy.Subscriber('IGTL_STRING_IN', igtlstring, self.callbackString)
        rospy.Subscriber('IGTL_TRANSFORM_IN', igtltransform,
                         self.callbackTransformation)
        self.pub1 = rospy.Publisher('IGTL_STRING_OUT',
                                    igtlstring,
                                    queue_size=10)
        self.pub2 = rospy.Publisher('IGTL_STRING_OUT',
                                    igtlstring,
                                    queue_size=10)
        self.motors = rospy.Publisher('IGTL_STRING_OUT',
                                      igtlstring,
                                      queue_size=10)
        self.galilStatus = rospy.Publisher('IGTL_STRING_OUT',
                                           igtlstring,
                                           queue_size=10)

        rospy.init_node('talker', anonymous=True)

        # Define the variables for openigtlink
        self.TransferData1 = igtlstring()
        self.TransferData1.name = "statusTarget"
        self.TransferData2 = igtlstring()
        self.TransferData2.name = "statusZ-Frame"
        self.motorsData = igtlstring()
        self.motorsData.name = "motorPosition"
        self.galilStatusData = igtlstring()
        self.galilStatusData.name = "status"

        #Variables:
        self.status = 0
        self.CartesianPositionA = 0
        self.CartesianPositionB = 0
        self.OrientationA = 0
        self.OrientationB = 0
        self.state = IDLE
        self.MotorsReady = 0
        self.targetRAS = numpy.matrix(
            '1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0'
        )
        self.targetRAS_angle = numpy.matrix(
            '1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0'
        )
        self.targetRobot = numpy.matrix(
            '1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0'
        )
        self.zTransReady = False
        self.zTrans = numpy.matrix(
            '1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0'
        )
        self.target = Target()
        self.connectionStatus = False
        self.save_position_A = 0
        self.save_position_B = 0
        self.save_position_C = 0
        self.save_position_D = 0
Exemple #4
0
 def initialize(self, img, detections=None, calcHist=False):
     (self.img_height, self.img_width, self.n_channels) = img.shape
     self.tracks = []
     if len(detections) > 0 and detections:
         for idx, det in enumerate(detections):
             target = Target(det.bbox, idx, (random.randint(
                 0, 255), random.randint(0, 255), random.randint(0, 255)),
                             det.conf, self.SURVIVAL_RATE, det.feature)
             self.tracks.append(target)
             self.labels.append(idx)
         self.initialized = True
     else:
         self.initialized = False
Exemple #5
0
    def estimate(self, img = None, draw = False, color = (0, 255, 0), verbose = False):
        if self.initialized:
            num_estimated = int(round(self.persistent_weights.sum()))
            
            if num_estimated > 0:
                kmeans = KMeans(n_clusters = num_estimated).fit(self.persistent_states)
                estimated_targets = np.rint(kmeans.cluster_centers_).astype(int)
                
                new_tracks = []
                label = 0
                for et in estimated_targets:
                    while (label in self.labels or label in self.current_labels):
                        label+=1
                    target = Target(Rectangle(et[0], et[1], et[2], et[3]), label,\
                    (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) )
                    new_tracks.append(target)
                    self.current_labels.append(label)
                    label+=1

                # affinity
                '''new_tracks_features = self.detector.get_features(img, new_tracks)
                affinity_matrix = appearance_affinity(self.tracks_features, new_tracks_features) *\
                                  motion_affinity(self.tracks, new_tracks) * \
                                  shape_affinity(self.tracks, new_tracks)
                affinity_matrix = 1./affinity_matrix
                row_ind, col_ind = linear_sum_assignment(affinity_matrix)'''
                
                #######
                cost = cost_matrix(self.tracks, new_tracks)
                row_ind, col_ind = linear_sum_assignment(cost)

                for r,c in zip(row_ind, col_ind):
                    new_tracks[c].color = self.tracks[r].color
                    new_tracks[c].label = self.tracks[r].label

                self.tracks = new_tracks[:]
                #self.tracks_features = new_tracks_features[:]

                del self.current_labels[:]
                for track in self.tracks:
                    self.current_labels.append(track.label)
                self.labels = self.labels.union(self.current_labels)

                if draw:
                    for track in self.tracks:
                        cv2.rectangle(img, (track.bbox.x, track.bbox.y), (track.bbox.x + track.bbox.width, track.bbox.y + track.bbox.height), track.color, 3)
                if verbose:
                    print 'estimated targets: ' + str(num_estimated)
                return self.tracks
    def __init__(self):

        rospy.Subscriber('IGTL_STRING_IN', igtlstring, self.callbackString)
        rospy.Subscriber('IGTL_TRANSFORM_IN', igtltransform, self.callbackTransformation)
        self.pub = rospy.Publisher('IGTL_STRING_OUT', igtlstring, queue_size=10)
        rospy.init_node('talker', anonymous=True)
        # Define the variables
        self.TransferData = igtlstring
        self.CartesianPositionA = 0
        self.CartesianPositionB = 0
        self.OrientationA = 0
        self.OrientationB = 0
        self.state = IDLE
        self.MotorsReady = 0
        self.targetRAS = numpy.matrix('1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0')
        self.targetRAS_angle = numpy.matrix('1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0')
        self.targetRobot = numpy.matrix('1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0')
        self.zTransReady = False
        self.zTrans = numpy.matrix('1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0 ; 0.0 0.0 1.0 0.0; 0.0 0.0 0.0 1.0')
        self.target = Target()
Exemple #7
0
if __name__ == '__main__':
    try:
        try:
            modem_id = int(sys.argv[1])
            radius = float(sys.argv[2])
            distance_between_meas = int(sys.argv[3])
            num_points = float(sys.argv[4])
            
        except IndexError:
            print('Three arguments are requestd <modem ID>, <circumference radius>, <distance between measurements> and <number of range measurements>')
            sys.exit()
        if radius<1 or radius>500:
            print('Radius must be between 1 and 500')
            sys.exit()
        elif num_points<1 or num_points>100:
            if num_points == -1:
                print('Infinit number of points will be measured')
            else:
                print('Number of measurement must be between 1 and 100')
                sys.exit()
        elif distance_between_meas<1 or distance_between_meas>100:
            print('Distance between measurements must be between 1 and 100')
            sys.exit()
        target = Target()
        tracker = TargetTracking()
        tracker.start(target, modem_id, radius, distance_between_meas, num_points)
        print('Done')

    except rospy.ROSInterruptException or KeyboardInterrupt:
        pass
Exemple #8
0
    def update(self, img, detections=None, verbose=False, calcHist=False):
        self.birth_model = []
        if self.is_initialized() and len(detections) > 0 and detections:
            new_detections = []
            for idx, det in enumerate(detections):
                target = Target(bbox = det.bbox, color = (random.randint(0,255), random.randint(0,255), random.randint(0,255)),\
                    conf = det.conf, survival_rate = self.SURVIVAL_RATE, feature = det.feature)
                new_detections.append(target)
            new_tracks = []
            if len(self.tracks) > 0:
                diagonal = np.sqrt(
                    np.power(self.img_height, 2) + np.power(self.img_width, 2))
                area = self.img_height * self.img_width
                cost = cost_matrix(self.tracks, new_detections, diagonal, area,
                                   False)
                #tracks_ind, new_dets_ind = linear_sum_assignment(cost)
                tracks_ind, new_dets_ind = solve_dense(cost)
                dets_high_cost = set()
                for idxTrack, idxNewDet in zip(tracks_ind, new_dets_ind):
                    if cost[idxTrack, idxNewDet] < self.THRESHOLD:
                        new_detections[idxNewDet].label = self.tracks[
                            idxTrack].label
                        new_detections[idxNewDet].color = self.tracks[
                            idxTrack].color
                        self.tracks[idxTrack].update(
                            new_detections[idxNewDet].bbox)
                        new_tracks.append(self.tracks[idxTrack])
                    else:
                        self.tracks[idxTrack].survival_rate = np.exp(
                            self.SURVIVAL_DECAY *
                            (-1.0 + self.tracks[idxTrack].survival_rate * 0.9))
                        new_tracks.append(self.tracks[idxTrack])
                        dets_high_cost.add(idxNewDet)

                tracks_no_selected = set(np.arange(len(
                    self.tracks))) - set(tracks_ind)
                for idxTrack in tracks_no_selected:
                    #print str(new_tracks[idxTrack].bbox.x) + ',' + str(new_tracks[idxTrack].bbox.y) + ',' + str(new_tracks[idxTrack].bbox.width) + ',' + str(new_tracks[idxTrack].bbox.height)
                    self.tracks[idxTrack].survival_rate = np.exp(
                        self.SURVIVAL_DECAY *
                        (-1.0 + self.tracks[idxTrack].survival_rate * 0.9))
                    new_tracks.append(self.tracks[idxTrack])
                #print '###################'

                new_detections_no_selected = set(np.arange(
                    len(new_detections))) - set(new_dets_ind)
                new_detections_no_selected = new_detections_no_selected | dets_high_cost
                for idxNewDet in new_detections_no_selected:
                    #print str(new_detections[idxNewDet].bbox.x) + ',' + str(new_detections[idxNewDet].bbox.y) + ',' + str(new_detections[idxNewDet].bbox.width) + ',' + str(new_detections[idxNewDet].bbox.height)
                    if np.random.uniform() > self.BIRTH_RATE:
                        new_label = max(self.labels) + 1
                        new_detections[idxNewDet].label = new_label
                        self.birth_model.append(new_detections[idxNewDet])
                        self.labels.append(new_label)
                #print '###################'
            else:
                for idxNewDet, det in enumerate(new_detections):
                    if np.random.uniform() > self.BIRTH_RATE:
                        new_label = max(self.labels) + 1
                        new_detections[idxNewDet].label = new_label
                        self.birth_model.append(new_detections[idxNewDet])
                        self.labels.append(new_label)

            #dpp = DPP()
            #self.tracks = dpp.run(boxes = new_tracks, img_size = (self.img_width, self.img_height),features=None)
            #self.tracks = nms(new_tracks, 0.7, 0, 0.5)
            self.tracks = new_tracks