Exemple #1
0
    def __init__(self, mode):
        # Define Saver
        self.saver = Saver(opt, mode)
        self.logger = self.saver.logger

        # Visualize
        self.summary = TensorboardSummary(self.saver.experiment_dir)
        self.writer = self.summary.create_summary()

        # Dataset dataloader
        self.train_dataset, self.train_loader = make_data_loader(opt)
        self.nbatch_train = len(self.train_loader)
        self.val_dataset, self.val_loader = make_data_loader(opt, mode="val")
        self.nbatch_val = len(self.val_loader)

        # Model
        if opt.sync_bn is None and len(opt.gpu_id) > 1:
            opt.sync_bn = True
        else:
            opt.sync_bn = False
        # model = DeepLab(opt)
        # model = CSRNet()
        model = CRGNet(opt)
        model_info(model, self.logger)
        self.model = model.to(opt.device)

        # Loss
        if opt.use_balanced_weights:
            classes_weights_file = osp.join(opt.root_dir, 'train_classes_weights.npy')
            if os.path.isfile(classes_weights_file):
                weight = np.load(classes_weights_file)
            else:
                weight = calculate_weigths_labels(
                    self.train_loader, opt.root_dir)
            print(weight)
            opt.loss['weight'] = weight
        self.loss = build_loss(opt.loss)

        # Define Evaluator
        self.evaluator = Evaluator()  # use region to eval: class_num is 2

        # Resuming Checkpoint
        self.best_pred = 0.0
        self.start_epoch = 0
        if opt.resume:
            if os.path.isfile(opt.pre):
                print("=> loading checkpoint '{}'".format(opt.pre))
                checkpoint = torch.load(opt.pre)
                self.start_epoch = checkpoint['epoch']
                self.best_pred = checkpoint['best_pred']
                self.model.load_state_dict(checkpoint['state_dict'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(opt.pre, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(opt.pre))

        if len(opt.gpu_id) > 1:
            print("Using multiple gpu")
            self.model = torch.nn.DataParallel(self.model,
                                               device_ids=opt.gpu_id)

        # Define Optimizer
        # train_params = [{'params': model.get_1x_lr_params(), 'lr': opt.lr},
        #                 {'params': model.get_10x_lr_params(), 'lr': opt.lr * 10}]
        # self.optimizer = torch.optim.SGD(train_params,
        #                                  momentum=opt.momentum,
        #                                  weight_decay=opt.decay)
        self.optimizer = torch.optim.SGD(self.model.parameters(),
                                         lr=opt.lr,
                                         momentum=opt.momentum,
                                         weight_decay=opt.decay)

        # Define lr scheduler
        # self.scheduler = LR_Scheduler(mode=opt.lr_scheduler,
        #                               base_lr=opt.lr,
        #                               num_epochs=opt.epochs,
        #                               iters_per_epoch=self.nbatch_train,
        #                               lr_step=140)
        self.scheduler = optim.lr_scheduler.MultiStepLR(
            self.optimizer,
            milestones=[round(opt.epochs * x) for x in opt.steps],
            gamma=opt.gamma)

        # Time
        self.loss_hist = collections.deque(maxlen=500)
        self.timer = Timer(opt.epochs, self.nbatch_train, self.nbatch_val)
        self.step_time = collections.deque(maxlen=opt.print_freq)
Exemple #2
0
    def __init__(self, mode):
        # Define Saver
        self.saver = Saver(opt, mode)
        self.logger = self.saver.logger

        # visualize
        self.summary = TensorboardSummary(self.saver.experiment_dir, opt)
        self.writer = self.summary.writer

        # Define Dataloader
        # train dataset
        self.train_dataset, self.train_loader = make_data_loader(opt, train=True)
        self.nbatch_train = len(self.train_loader)
        self.num_classes = self.train_dataset.num_classes

        # val dataset
        self.val_dataset, self.val_loader = make_data_loader(opt, train=False)
        self.nbatch_val = len(self.val_loader)

        # Define Network
        # initilize the network here.
        self.model = Model(opt, self.num_classes)
        self.model = self.model.to(opt.device)

        # Detection post process(NMS...)
        self.post_pro = PostProcess(**opt.nms)

        # Define Optimizer
        if opt.adam:
            self.optimizer = optim.Adam(self.model.parameters(), lr=opt.lr)
        else:
            self.optimizer = optim.SGD(self.model.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.decay)

        # Apex
        if opt.use_apex:
            self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level='O1')

        # Resuming Checkpoint
        self.best_pred = 0.0
        self.start_epoch = 0
        if opt.resume:
            if os.path.isfile(opt.pre):
                print("=> loading checkpoint '{}'".format(opt.pre))
                checkpoint = torch.load(opt.pre)
                self.start_epoch = checkpoint['epoch'] + 1
                self.best_pred = checkpoint['best_pred']
                self.model.load_state_dict(checkpoint['state_dict'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(opt.pre, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(opt.pre))

        # Define lr scherduler
        # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        #     self.optimizer, patience=3, verbose=True)
        self.scheduler = optim.lr_scheduler.MultiStepLR(
            self.optimizer,
            milestones=[round(opt.epochs * x) for x in opt.steps],
            gamma=opt.gamma)
        self.scheduler.last_epoch = self.start_epoch - 1

        # Using mul gpu
        if len(opt.gpu_id) > 1:
            self.logger.info("Using multiple gpu")
            self.model = torch.nn.DataParallel(self.model,
                                               device_ids=opt.gpu_id)

        # metrics
        if opt.eval_type == 'cocoeval':
            self.eval = COCO_eval(self.val_dataset.coco)
        else:
            self.eval = VOC_eval(self.num_classes)

        self.loss_hist = collections.deque(maxlen=500)
        self.timer = Timer(opt.epochs, self.nbatch_train, self.nbatch_val)
        self.step_time = collections.deque(maxlen=opt.print_freq)
Exemple #3
0
parser.add_argument('--validate', action='store_true',
                    help='validate')

# checking point
parser.add_argument('--resume', type=str, default=None,
                    help='put the path to resuming file if needed')
parser.add_argument('--checkname', type=str, default='VesselNN_Unsupervised',
                    help='set the checkpoint name')
args = parser.parse_args()

# Define Saver
saver = Saver(args)
saver.save_experiment_config()

# Define Tensorboard Summary
summary = TensorboardSummary(saver.experiment_dir)
writer = summary.create_summary()

# Data
dataset = Directory_Image_Train(images_path=args.train_images_path,
                                labels_path=args.train_labels_path,
                                data_shape=(32, 128, 128),
                                lables_shape=(32, 128, 128),
                                range_norm=args.range_norm)
dataloader = DataLoader(dataset, batch_size=torch.cuda.device_count() * args.batch_size, shuffle=True, num_workers=2)

# Data - validation
dataset_val = Single_Image_Eval(image_path=args.val_image_path,
                                label_path=args.val_label_path,
                                data_shape=(32, 128, 128),
                                lables_shape=(32, 128, 128),
    def __init__(self, args):
        self.args = args

        # Define Saver
        self.saver = Saver(args)
        self.saver.save_experiment_config()
        # Define Tensorboard Summary
        self.summary = TensorboardSummary(args.logdir)
        self.writer = self.summary.create_summary()

        # Define Dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True}
        dltrain = DLDataset('trainval', "./data/pascal_voc_seg/tfrecord/")
        dlval = DLDataset('val', "./data/pascal_voc_seg/tfrecord/")
        # dltrain = DLDataset('trainval', "./data/pascal_voc_seg/VOCdevkit/VOC2012/")
        # dlval = DLDataset('val', "./data/pascal_voc_seg/VOCdevkit/VOC2012/")
        self.train_loader = DataLoader(dltrain,
                                       batch_size=args.batch_size,
                                       shuffle=True,
                                       num_workers=args.workers,
                                       pin_memory=True)
        self.val_loader = DataLoader(dlval,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=args.workers,
                                     pin_memory=True)

        # Define network
        model = Deeplab()

        train_params = [{
            'params': model.get_1x_lr_params(),
            'lr': args.lr
        }, {
            'params': model.get_10x_lr_params(),
            'lr': args.lr * 10
        }]

        # Define Optimizer
        optimizer = torch.optim.SGD(train_params,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay,
                                    nesterov=args.nesterov)

        # Define Criterion
        # whether to use class balanced weights
        self.criterion = nn.CrossEntropyLoss(ignore_index=255).cuda()
        self.model, self.optimizer = model, optimizer

        # Define Evaluator
        self.evaluator = Evaluator(21)
        # Define lr scheduler
        self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
            optimizer=optimizer)

        # Using cuda
        # if args.cuda:
        # self.model = torch.nn.DataParallel(self.model)
        self.model = self.model.cuda()

        # Resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'".format(
                    args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))

        # Clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0