Exemple #1
0
def xihua():
    for lists in os.listdir(Constants.IMG_DIR_TENCENT_TRAIN):
        #print(lists)
        path = os.path.join(Constants.IMG_DIR_TENCENT_TRAIN, lists)
        if not os.path.isdir(path):
            print(path)
            oriImg = cv2.imread(path, 0)
            img = Util.binaryzation(oriImg)
            img = Util.erasePaddingInOneChar(img)
            #cv2.imshow("ori", img)
            #height, width = img.shape
            img = ~Util.skeleton(~img)

            cv2.imwrite(path, img)
            #ret.append(readOneImg(path))
    pass
Exemple #2
0
def readOneImg(path):
    oriImg = cv2.imread(path, 0)
    img = Util.binaryzation(oriImg)
    img = Util.erasePaddingInOneChar(img)
    height, width = img.shape
    #获取指定的三个分割点, 再根据分割点做分割线
    points, directions = getSpiltPoint(path[path.rindex('/'):])
    
    path1 = Util.fillPath(SpiltUtil.spiltOne(img, points[0], directions[0], 0), height)
    path2 = Util.fillPath(SpiltUtil.spiltOne(img, points[1], directions[1], 1), height)
    path3 = Util.fillPath(SpiltUtil.spiltOne(img, points[2], directions[2], 2), height)
    path0 = Util.getLeftBorder(height)
    path4 = Util.getRightBoder(width, height)
    ret = []
    
    ret.extend(Util.conventToTrainCharFromAllWrap(getOneChar(img, path0, path1)))
    ret.extend(Util.conventToTrainCharFromAllWrap(getOneChar(img, path1, path2)))
    ret.extend(Util.conventToTrainCharFromAllWrap(getOneChar(img, path2, path3)))
    ret.extend(Util.conventToTrainCharFromAllWrap(getOneChar(img, path3, path4)))
    return ret
Exemple #3
0
def readInput(svm, puzzle):
    oriImg = cv2.imread(puzzle, 0)
    img = Util.binaryzation(oriImg)
    img = Util.erasePaddingInOneChar(img)
    points, paths = SpiltUseBackground.getCornerPointsAndPaths(img)
    print("-------RECOGNISE--------")
    print(points)
    print("paths:")
    for p in paths:
        print(p)
    height, width = img.shape
    code = []
    #p1 = [23:39]
    path0 = Util.getLeftBorder(height)
    good_path, result = recogniseOne(svm, img, path0, paths, 0)
    print("First split point:" + str(good_path[0][0]) + " result:" +
          chr(svm.classes_[result] + ord('A')))
    code.append(chr(svm.classes_[result] + ord('A')))

    #path0 = Util.fillPath(SpiltUseCV2.spiltOne(img, p1), height)
    good_path, result = recogniseOne(svm, img, good_path, paths, 1)
    print("Second split point:" + str(good_path[0][0]) + " result:" +
          chr(svm.classes_[result] + ord('A')))
    code.append(chr(svm.classes_[result] + ord('A')))

    #path0 = Util.fillPath(SpiltUseCV2.spiltOne(img, p2), height)
    good_path, result = recogniseOne(svm, img, good_path, paths, 2)
    print("Third split point:" + str(good_path[0][0]) + " result:" +
          chr(svm.classes_[result] + ord('A')))
    code.append(chr(svm.classes_[result] + ord('A')))

    #path0 = Util.fillPath(SpiltUseCV2.spiltOne(img, p3), height)
    good_path, result = recogniseOne(svm, img, good_path, paths, 3)
    print("Fourth split point:" + str(good_path[0][0]) + " result:" +
          chr(svm.classes_[result] + ord('A')))
    code.append(chr(svm.classes_[result] + ord('A')))

    print("Result:" + str(code))
    return code
Exemple #4
0
def spiltOne(img, startX, direction, charIndex):
    #for j in range(startX, endX):
    height, width = img.shape
    path = []
    img = Util.erasePaddingInOneChar(img)
    img = ~Util.skeleton(~img)
    #Util.printCV2Image(img)
    #cv2.imshow("1", img)

    if direction == Constants.SEARCH_FROM_TOP:
        print("direction: t")
        path.append((startX, 0))
        searchOnceFromTop(img, path, startX, 0, charIndex)
    else:
        print("direction: b")
        path.append((startX, height - 1))
        searchOnceFromBottom(img, path, startX, height - 1, charIndex)
    #print(path)
    #for i in range(len(path.path) - 1):
    #    cv2.line(img, path.paths[i].toTuple(), path.paths[i - 1].toTuple(), 0)
    #cv2.imshow("Image", img)
    #if we want show a img, must add this
    #cv2.waitKey (0)
    return path
Exemple #5
0
def erasePaddingInAllChar(target):
    for img in target:
        for char in img:
            char = Util.erasePaddingInOneChar(char)
Exemple #6
0
#膨胀图像
def dilate(img):
    #OpenCV定义的结构元素
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    #膨胀图像
    dilated = cv2.dilate(img, kernel)
    return dilated


if __name__ == "__main__":
    #xihua()
    oriImg = cv2.imread(
        Constants.IMG_DIR_TENCENT_TRAIN + "AANV_39b_58b_82b.jpg", 0)
    img = Util.binaryzation(oriImg)
    #img = dilate(~img)
    img = Util.erasePaddingInOneChar(img)
    #img = Util.binaryzation(oriImg)
    #img = ~Util.skeleton(~img)

    cv2.imwrite(Constants.IMG_DIR_TENCENT_TRAIN + "1.jpg", img)
    '''img = cv2.imread(Constants.IMG_DIR_TENCENT_PUZZLE + "mbha.jpg")
    im = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    im = cv2.threshold(im, 0, 255, cv2.THRESH_OTSU)[1]
    im[im == 255] = 1
    im = morphology.skeletonize(im)
    im = im.astype(np.uint8)
    im[im == 1] = 255
   
    cv2.imshow("Image1", im)
    cv2.imshow("Image2", img)
    im[im == 255] = 1