from utilsTrain import generator from modelLib import dice_coef import h5py import numpy as np batchSize = 1 h5path = "..\\out\\train_true_256.h5" h5file = h5py.File(h5path, "r") n = h5file["image"].shape[0] a = np.arange(n) train_index, test_index = train_test_split(a, test_size=0.2, random_state=42) trainGen = generator(h5file, train_index, batchSize) testGen = generator(h5file, test_index, batchSize) model = basic_unet() bestModelPath = '..\\out\\weights\\UNET_01-loss--1.375.hdf5' model.load_weights(bestModelPath) v = next(trainGen) x = v[0] y_true = v[1] y_pred = model.predict(x) y_true = y_true.flatten()
nTotal = db["RNASeq"].shape[0] nFeat = db["RNASeq"].shape[1] n_classes = 33 X = np.arange(nTotal) y = db["label"][...] skf = StratifiedKFold(n_splits=5) skf.get_n_splits(X, y) kdx = 0 for train_index, test_index in skf.split(X, y): kdx += 1 train_generator = generator(db, train_index, batch_size=32) test_generator = generator(db, test_index, batch_size=32) model = makeModel(modelName) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print("\nCross Validation Fold : %02d \n" % kdx) check1 = ModelCheckpoint(os.path.join( weightsFolder, modelName + "_fold_%02d" % kdx + "_{epoch:02d}-loss-{val_loss:.3f}.hdf5"), monitor='val_loss', save_best_only=True, mode='auto')
nTotal = db["RNASeq"].shape[0] nFeat = db["RNASeq"].shape[1] n_classes = 33 X = np.arange(nTotal) y = db["label"][...] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.25, random_state=42) train_generator = generator(db, X_train, batch_size=32) test_generator = generator(db, X_test, batch_size=32) model = makeModel(modelName) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) check1 = ModelCheckpoint(os.path.join( weightsFolder, modelName + "_{epoch:02d}-loss-{val_loss:.3f}.hdf5"), monitor='val_loss', save_best_only=True, mode='auto') check2 = ModelCheckpoint(bestModelPath, monitor='val_loss',