import numpy import theano import theano.tensor as T if not sys.path.count("../../lib"): sys.path.append("../../lib") from utils_abhi import load_data from mlp import MLP learning_rate = 0.01 L1_reg = 0.00 L2_reg = 0.0001 n_epochs = 1000 batch_size = 20 n_hidden = 500 train_filename = 'paintings_train.csv' test_filename = 'paintings_test.csv' datasets = load_data(train_filename, test_filename) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model'
def test_sda( train_file_name ='../data/five_class_full/Paintings_train.csv', test_file_name ='../data/five_class_full/Paintings_test.csv', finetune_lr=0.1, pretraining_epochs=15, pretrain_lr=0.001, training_epochs=1000, batch_size=10): """ Demonstrates how to train and test a stochastic dN_train+N_validenoising autoencoder. This is demonstrated on MNIST. :train_file_name: string :param train_file_name: Input numpy training file :test_file_name: string :param test_file_name: Input numpy testing file :type learning_rate: float :param learning_rate: learning rate used in the finetune stage (factor for the stochastic gradient) :type pretraining_epochs: int :param pretraining_epochs: number of epoch to do pretraining :type pretrain_lr: float :param pretrain_lr: learning rate to be used during pre-training :type n_iter: int :param n_iter: maximal number of iterations ot run the optimizer Returns tuple of best validataion loss and test score """ # Change here datasets = load_data(train_file_name, test_file_name) # End of change train_set_x, train_set_y = datasets[0] # TODO remove this second limiter valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] import ipdb; ipdb.set_trace() # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_ins = train_set_x.get_value(borrow=True).shape[1] n_outs = 5 # numpy random generator numpy_rng = numpy.random.RandomState(89677) print '... building the model' # construct the stacked denoising autoencoder class sda = SdA2(numpy_rng=numpy_rng, n_ins= n_ins, hidden_layers_sizes=[1000, 1000, 1000], n_outs=n_outs, corruption_levels=[.1,.2,.3]) #Checking precision # get python variable from theano variable test_y_pyvar = get_y_from_shared(test_set_y) test_x_pyvar = test_set_x.get_value() print 'The precision is ', sda.precision(test_x_pyvar, test_y_pyvar) ######################### # PRETRAINING THE MODEL # ######################### print '... getting the pretraining functions' pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x, batch_size=batch_size) print '... pre-training the model' start_time = time.clock() ## Pre-train layer-wise corruption_levels = [.1, .2, .3] for i in xrange(sda.n_layers): # go through pretraining epochs for epoch in xrange(pretraining_epochs): # go through the training set c = [] for batch_index in xrange(n_train_batches): c.append(pretraining_fns[i](index=batch_index, corruption=corruption_levels[i], lr=pretrain_lr)) print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch), print numpy.mean(c) end_time = time.clock() print >> sys.stderr, ('The pretraining code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) ######################## # FINETUNING THE MODEL # ######################## # get the training, validation and testing function for the model print '... getting the finetuning functions' train_fn, validate_model, test_model = sda.build_finetune_functions( datasets=datasets, batch_size=batch_size, learning_rate=finetune_lr) print '... finetunning the model' # early-stopping parameters patience = 10 * n_train_batches # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = numpy.inf test_score = 0. start_time = time.clock() done_looping = False epoch = 0 while (epoch < training_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_fn(minibatch_index) iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: validation_losses = validate_model() this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if (this_validation_loss < best_validation_loss * improvement_threshold): patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = test_model() test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score * 100.)) print >> sys.stderr, ('The training code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) #Checking precision # get python variable from theano variable test_y_pyvar = get_y_from_shared(test_set_y) test_x_pyvar = test_set_x.get_value() print 'The precision is ', sda.precision(test_x_pyvar, test_y_pyvar) print 'The recall is ', sda.recall(test_x_pyvar, test_y_pyvar) clr = sda.classification_report(test_x_pyvar, test_y_pyvar) print 'The classification report is ', clr # End return sda
import numpy import theano import theano.tensor as T if not sys.path.count("../../lib"): sys.path.append("../../lib") from utils_abhi import load_data from mlp import MLP learning_rate=0.01 L1_reg=0.00 L2_reg=0.0001 n_epochs=1000 batch_size=20 n_hidden=500 train_filename ='paintings_train.csv' test_filename = 'paintings_test.csv' datasets = load_data(train_filename, test_filename) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model'
def test_sda(train_file_name='../data/five_class_full/Paintings_train.csv', test_file_name='../data/five_class_full/Paintings_test.csv', finetune_lr=0.1, pretraining_epochs=15, pretrain_lr=0.001, training_epochs=1000, batch_size=10): """ Demonstrates how to train and test a stochastic dN_train+N_validenoising autoencoder. This is demonstrated on MNIST. :train_file_name: string :param train_file_name: Input numpy training file :test_file_name: string :param test_file_name: Input numpy testing file :type learning_rate: float :param learning_rate: learning rate used in the finetune stage (factor for the stochastic gradient) :type pretraining_epochs: int :param pretraining_epochs: number of epoch to do pretraining :type pretrain_lr: float :param pretrain_lr: learning rate to be used during pre-training :type n_iter: int :param n_iter: maximal number of iterations ot run the optimizer Returns tuple of best validataion loss and test score """ # Change here datasets = load_data(train_file_name, test_file_name) # End of change train_set_x, train_set_y = datasets[0] # TODO remove this second limiter valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] import ipdb ipdb.set_trace() # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_ins = train_set_x.get_value(borrow=True).shape[1] n_outs = 5 # numpy random generator numpy_rng = numpy.random.RandomState(89677) print '... building the model' # construct the stacked denoising autoencoder class sda = SdA2(numpy_rng=numpy_rng, n_ins=n_ins, hidden_layers_sizes=[1000, 1000, 1000], n_outs=n_outs, corruption_levels=[.1, .2, .3]) #Checking precision # get python variable from theano variable test_y_pyvar = get_y_from_shared(test_set_y) test_x_pyvar = test_set_x.get_value() print 'The precision is ', sda.precision(test_x_pyvar, test_y_pyvar) ######################### # PRETRAINING THE MODEL # ######################### print '... getting the pretraining functions' pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x, batch_size=batch_size) print '... pre-training the model' start_time = time.clock() ## Pre-train layer-wise corruption_levels = [.1, .2, .3] for i in xrange(sda.n_layers): # go through pretraining epochs for epoch in xrange(pretraining_epochs): # go through the training set c = [] for batch_index in xrange(n_train_batches): c.append(pretraining_fns[i](index=batch_index, corruption=corruption_levels[i], lr=pretrain_lr)) print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch), print numpy.mean(c) end_time = time.clock() print >> sys.stderr, ('The pretraining code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) ######################## # FINETUNING THE MODEL # ######################## # get the training, validation and testing function for the model print '... getting the finetuning functions' train_fn, validate_model, test_model = sda.build_finetune_functions( datasets=datasets, batch_size=batch_size, learning_rate=finetune_lr) print '... finetunning the model' # early-stopping parameters patience = 10 * n_train_batches # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = numpy.inf test_score = 0. start_time = time.clock() done_looping = False epoch = 0 while (epoch < training_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_fn(minibatch_index) iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: validation_losses = validate_model() this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if (this_validation_loss < best_validation_loss * improvement_threshold): patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = test_model() test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = time.clock() print(('Optimization complete with best validation score of %f %%,' 'with test performance %f %%') % (best_validation_loss * 100., test_score * 100.)) print >> sys.stderr, ('The training code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) #Checking precision # get python variable from theano variable test_y_pyvar = get_y_from_shared(test_set_y) test_x_pyvar = test_set_x.get_value() print 'The precision is ', sda.precision(test_x_pyvar, test_y_pyvar) print 'The recall is ', sda.recall(test_x_pyvar, test_y_pyvar) clr = sda.classification_report(test_x_pyvar, test_y_pyvar) print 'The classification report is ', clr # End return sda