def get_varied_pipecfg_lbls(cfgdict_list, pipecfg_list=None): if pipecfg_list is None: from ibeis.algo import Config cfg_default_dict = dict(Config.QueryConfig().parse_items()) cfgx2_lbl = ut.get_varied_cfg_lbls(cfgdict_list, cfg_default_dict) else: # TODO: group cfgdict by config type and then get varied labels cfg_default_dict = None cfgx2_lbl = ut.get_varied_cfg_lbls(cfgdict_list, cfg_default_dict) return cfgx2_lbl
def get_varied_pipecfg_lbls(cfgdict_list, pipecfg_list=None): if pipecfg_list is None: from ibeis.algo import Config #cls_list = [Config] * len(cfgdict_list) cfg_default_dict = dict(Config.QueryConfig().parse_items()) cfgx2_lbl = ut.get_varied_cfg_lbls(cfgdict_list, cfg_default_dict) else: # TODO: group cfgdict by config type and then get varied labels cfg_default_dict = None cfgx2_lbl = ut.get_varied_cfg_lbls(cfgdict_list, cfg_default_dict) return cfgx2_lbl
def compare_featscores(): """ CommandLine: ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,lnbnn],top_percent=[None,.5,.1] -a timectrl \ -p default:K=[1,2],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5] -a timectrl \ -p default:K=[1],normalizer_rule=name,sv_on=[True,False] \ --save featscore{db}.png --figsize=13,10 --diskshow ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=1,normalizer_rule=name --db PZ_Master1 \ --save featscore{db}.png --figsize=13,13 --diskshow ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=1,normalizer_rule=name --db GZ_ALL \ --save featscore{db}.png --figsize=13,13 --diskshow ibeis --tf compare_featscores --db GIRM_Master1 \ --nfscfg ':disttype=fg,L2_sift,normdist,lnbnn' \ -a timectrl -p default:K=1,normalizer_rule=name \ --save featscore{db}.png --figsize=13,13 ibeis --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=[1,2,3],normalizer_rule=name,sv_on=False \ --db PZ_Master1 --save featscore{db}.png \ --dpi=128 --figsize=15,20 --diskshow ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_MTEST ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GZ_ALL ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_Master1 ibeis --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GIRM_Master1 ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \ -p default:K=[1],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow ibeis --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \ -p default:K=[1],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.scorenorm import * # NOQA >>> result = compare_featscores() >>> print(result) >>> ut.quit_if_noshow() >>> import plottool as pt >>> ut.show_if_requested() """ import plottool as pt import ibeis nfs_cfg_list = NormFeatScoreConfig.from_argv_cfgs() learnkw = {} ibs, testres = ibeis.testdata_expts( defaultdb='PZ_MTEST', a=['default'], p=['default:K=1']) print('nfs_cfg_list = ' + ut.repr3(nfs_cfg_list)) encoder_list = [] lbl_list = [] varied_nfs_lbls = ut.get_varied_cfg_lbls(nfs_cfg_list) varied_qreq_lbls = ut.get_varied_cfg_lbls(testres.cfgdict_list) #varies_qreq_lbls #func = ut.cached_func(cache_dir='.')(learn_featscore_normalizer) for datakw, nlbl in zip(nfs_cfg_list, varied_nfs_lbls): for qreq_, qlbl in zip(testres.cfgx2_qreq_, varied_qreq_lbls): lbl = qlbl + ' ' + nlbl cfgstr = '_'.join([datakw.get_cfgstr(), qreq_.get_full_cfgstr()]) try: encoder = vt.ScoreNormalizer() encoder.load(cfgstr=cfgstr) except IOError: print('datakw = %r' % (datakw,)) encoder = learn_featscore_normalizer(qreq_, datakw, learnkw) encoder.save(cfgstr=cfgstr) encoder_list.append(encoder) lbl_list.append(lbl) fnum = 1 # next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list), nCols=3) next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list) + 1, nCols=3, start=3) iconsize = 94 if len(encoder_list) > 3: iconsize = 64 icon = qreq_.ibs.get_database_icon(max_dsize=(None, iconsize), aid=qreq_.qaids[0]) score_range = (0, .6) for encoder, lbl in zip(encoder_list, lbl_list): #encoder.visualize(figtitle=encoder.get_cfgstr(), with_prebayes=False, with_postbayes=False) encoder._plot_score_support_hist(fnum, pnum=next_pnum(), titlesuf='\n' + lbl, score_range=score_range) encoder._plot_prebayes(fnum, pnum=next_pnum()) encoder._plot_roc(fnum, pnum=next_pnum()) if icon is not None: pt.overlay_icon(icon, coords=(1, 0), bbox_alignment=(1, 0)) nonvaried_lbl = ut.get_nonvaried_cfg_lbls(nfs_cfg_list)[0] figtitle = qreq_.__str__() + '\n' + nonvaried_lbl pt.set_figtitle(figtitle) pt.adjust_subplots(hspace=.5, top=.92, bottom=.08, left=.1, right=.9) pt.update_figsize() pt.plt.tight_layout()