Exemple #1
0
    def test_vader_recur(self):
        X_train, W_train, y_train = generate_x_w_y(7, 400)
        # Note: y_train is used purely for monitoring performance when a ground truth clustering is available.
        # It can be omitted if no ground truth is available.
        # noinspection PyTypeChecker
        vader = VADER(X_train=X_train,
                      W_train=W_train,
                      y_train=y_train,
                      save_path=None,
                      n_hidden=[12, 2],
                      k=4,
                      learning_rate=1e-3,
                      output_activation=None,
                      recurrent=True,
                      batch_size=16)

        # pre-train without latent loss
        vader.pre_fit(n_epoch=10, verbose=True)
        # train with latent loss
        vader.fit(n_epoch=10, verbose=True)
        # get the clusters
        clustering = vader.cluster(X_train)
        assert any(clustering)
        assert len(clustering) == len(X_train)
        # get the re-constructions
        prediction = vader.predict(X_train)
        assert prediction.shape == X_train.shape
        # compute the loss given the network
        loss = vader.get_loss(X_train)
        assert loss
        assert "reconstruction_loss" in loss
        assert "latent_loss" in loss
        assert loss["reconstruction_loss"] >= 0
        assert loss["latent_loss"] >= 0
Exemple #2
0
    def test_vader_save_load_transfer_learning(self):
        save_folder = "test_vader_save_load_transfer_learning"
        save_path = f"{save_folder}//weights"

        if os.path.exists(save_folder):
            shutil.rmtree(save_folder)

        X_train, W_train, y_train = generate_x_w_y(7, 400)
        # noinspection PyTypeChecker
        vader = VADER(X_train=X_train,
                      W_train=W_train,
                      y_train=y_train,
                      save_path=save_path,
                      n_hidden=[12, 2],
                      k=4,
                      learning_rate=1e-3,
                      output_activation=None,
                      recurrent=True,
                      batch_size=16)
        vader.pre_fit(n_epoch=10, verbose=True)
        vader.fit(n_epoch=10, verbose=True)
        clustering_before_loading = vader.cluster(X_train)

        X_train_ft, W_train_ft, y_train_ft = generate_x_w_y(7, 400)
        vader = VADER(X_train=X_train_ft,
                      W_train=W_train_ft,
                      y_train=y_train_ft,
                      save_path=None,
                      n_hidden=[12, 2],
                      k=4,
                      learning_rate=1e-3,
                      output_activation=None,
                      recurrent=True,
                      batch_size=16)
        vader.load_weights(save_path)
        vader.pre_fit(n_epoch=10, verbose=True)
        vader.fit(n_epoch=10, verbose=True)
        # get the clusters
        clustering = vader.cluster(X_train_ft)

        if os.path.exists(save_folder):
            shutil.rmtree(save_folder)

        assert any(clustering)
        assert len(clustering) == len(X_train_ft)
        # get the re-constructions
        prediction = vader.predict(X_train_ft)
        assert prediction.shape == X_train_ft.shape
        # compute the loss given the network
        loss = vader.get_loss(X_train_ft)
        assert loss
        assert "reconstruction_loss" in loss
        assert "latent_loss" in loss
        assert loss["reconstruction_loss"] >= 0
        assert loss["latent_loss"] >= 0
Exemple #3
0
def test2():
    x_train, y_train = get_dete_for_seconed_test()
    vader = VADER(x_train=x_train,
                  y_train=y_train,
                  n_hidden=[12, 2],
                  k=2,
                  learning_rate=1e-3,
                  output_activation=None,
                  recurrent=False,
                  batch_size=16)
    # pre-train without latent loss
    vader.pre_fit(n_epoch=50, verbose=True)
    # train with latent loss
    vader.fit(n_epoch=50, verbose=True)
    # get the clusters
    c = vader.cluster(x_train)
    # get the re-constructions
    p = vader.predict(x_train)
    # compute the loss given the network
    l = vader.get_loss(x_train)
    # generate some samples
    g = vader.generate(10)
    # compute the loss given the network
    l = vader.get_loss(x_train)
Exemple #4
0
 def test_vader_nonrecur(self):
     NUM_OF_TIME_POINTS = 7
     X_train, y_train = generate_x_y_for_nonrecur(NUM_OF_TIME_POINTS, 400)
     # Run VaDER non-recurrently (ordinary VAE with GM prior)
     # noinspection PyTypeChecker
     vader = VADER(X_train=X_train,
                   y_train=y_train,
                   n_hidden=[12, 2],
                   k=2,
                   learning_rate=1e-3,
                   output_activation=None,
                   recurrent=False,
                   batch_size=16)
     # pre-train without latent loss
     vader.pre_fit(n_epoch=10, verbose=True)
     # train with latent loss
     vader.fit(n_epoch=10, verbose=True)
     # get the clusters
     clustering = vader.cluster(X_train)
     assert any(clustering)
     assert len(clustering) == len(X_train)
     # get the re-constructions
     prediction = vader.predict(X_train)
     assert prediction.shape == X_train.shape
     # compute the loss given the network
     loss = vader.get_loss(X_train)
     assert loss
     assert "reconstruction_loss" in loss
     assert "latent_loss" in loss
     assert loss["reconstruction_loss"] >= 0
     assert loss["latent_loss"] >= 0
     # generate some samples
     NUM_OF_GENERATED_SAMPLES = 10
     generated_samples = vader.generate(NUM_OF_GENERATED_SAMPLES)
     assert generated_samples
     assert "clusters" in generated_samples
     assert "samples" in generated_samples
     assert len(generated_samples["clusters"]) == NUM_OF_GENERATED_SAMPLES
     assert generated_samples["samples"].shape == (NUM_OF_GENERATED_SAMPLES,
                                                   NUM_OF_TIME_POINTS)
Exemple #5
0
    def test_vader_transfer_learning(self):
        X_train, W_train, y_train = generate_x_w_y(7, 400)
        # noinspection PyTypeChecker
        vader = VADER(X_train=X_train,
                      W_train=W_train,
                      y_train=y_train,
                      save_path=None,
                      n_hidden=[12, 2],
                      k=4,
                      learning_rate=1e-3,
                      output_activation=None,
                      recurrent=True,
                      batch_size=16)
        # pre-train without latent loss
        vader.pre_fit(n_epoch=10, verbose=True)
        # train with latent loss
        vader.fit(n_epoch=10, verbose=True)

        X_train_ft, W_train_ft, y_train_ft = generate_x_w_y(7, 400)
        vader.set_inputs(X_train_ft, W_train_ft, y_train_ft)
        # pre-train without latent loss
        vader.pre_fit(n_epoch=10, verbose=True)
        # train with latent loss
        vader.fit(n_epoch=10, verbose=True)

        # get the clusters
        clustering = vader.cluster(X_train_ft)
        assert any(clustering)
        assert len(clustering) == len(X_train_ft)
        # get the re-constructions
        prediction = vader.predict(X_train_ft)
        assert prediction.shape == X_train_ft.shape
        # compute the loss given the network
        loss = vader.get_loss(X_train_ft)
        assert loss
        assert "reconstruction_loss" in loss
        assert "latent_loss" in loss
        assert loss["reconstruction_loss"] >= 0
        assert loss["latent_loss"] >= 0
Exemple #6
0
              k=4,
              learning_rate=1e-3,
              output_activation=None,
              recurrent=True,
              batch_size=16)

# pre-train without latent loss
vader.pre_fit(n_epoch=50, verbose=True)
# train with latent loss
vader.fit(n_epoch=50, verbose=True)
# get the clusters
c = vader.cluster(X_train)
# get the re-constructions
p = vader.predict(X_train)
# compute the loss given the network
l = vader.get_loss(X_train)

# Run VaDER non-recurrently (ordinary VAE with GM prior)
nt = int(8)
ns = int(2e2)
sigma = np.diag(np.repeat(2, nt))
mu1 = np.repeat(-1, nt)
mu2 = np.repeat(1, nt)
a1 = np.random.multivariate_normal(mu1, sigma, ns)
a2 = np.random.multivariate_normal(mu2, sigma, ns)
X_train = np.concatenate((a1, a2), axis=0)
y_train = np.repeat([0, 1], ns)
ii = np.random.permutation(ns * 2)
X_train = X_train[ii, :]
y_train = y_train[ii]
# normalize (better for fitting)