def VAE_interpolating_experiment(device): batch_size = 2 latent_dim = 100 z = Variable(torch.randn(batch_size, latent_dim)).to(device) model = VAE(100).to(device) model.load_state_dict(torch.load(vae_path, map_location=device), strict=False) x = Variable(model.generate(z)).to(device) x_0 = x[0] x_1 = x[1] a_list = np.arange(0, 1.1, 0.1) z_list = [] x_list = [] for a in a_list: z_list.append(a*z[0] + (1-a)*z[1]) x_list.append(a*x_0 + (1-a)*x_1) z_list = torch.cat(z_list, dim=0).view(len(a_list),-1) x_list = torch.cat(x_list, dim=0).view(-1,3,32,32) zh_y = Variable(model.generate(z_list)).to(device) path = 'vae/results/interpolated/VAE_interpolated_zs.png' save_images(zh_y, path, nrow=len(zh_y)) path = 'vae/results/interpolated/VAE_interpolated_xs.png' save_images(x_list, path, nrow= len(x_list)) path = 'vae/results/interpolated/VAE_interpolated_xs_zs.png' save_images(torch.cat((x_list, zh_y), dim=0), path, nrow=11) results = torch.cat((x_list, zh_y), dim=0) difference = x_list - zh_y results = torch.cat((results, difference), dim=0) save_images(results, path, nrow=11)
def VAE_disentangled_representation_experiment(device): batch_size = 1 latent_dim=100 noise = Variable(torch.randn(batch_size, latent_dim)).to(device) model = VAE(100).to(device) model.load_state_dict(torch.load(vae_path, map_location=device), strict=False) dims = range(0,100) outputs = [] z_y = Variable(model.generate(noise)).to(device) for d in dims: zh = make_interpolation(noise, dim=d).view(batch_size, latent_dim) output = Variable(model.generate(zh)).to(device) outputs.append(output) outputs = torch.cat(outputs, dim=0) difference = outputs - z_y difference = torch.abs(difference).view(100,-1) sum_dif = torch.sum(difference, dim=1).detach().cpu().numpy() top_sum_diff_indcs = np.unravel_index(np.argsort(sum_dif, axis=None), sum_dif.shape)[0] top_sum_diff_indcs = top_sum_diff_indcs[-10:] top_k_images = Variable(outputs[top_sum_diff_indcs]).to(device).view(len(top_sum_diff_indcs), -1) top_k_images = torch.cat((z_y.view(1, -1), top_k_images)) path = 'vae/results/interpolated/VAE_top_disentangleds.png' save_images(top_k_images, path, nrow=len(top_k_images)) difference = top_k_images - z_y.view(1, -1) top_k_images = torch.cat((top_k_images, difference), dim=0) save_images(top_k_images, path, nrow=11) path = 'vae/results/interpolated/VAE_disentangleds_all.png' save_images(outputs, path, nrow=10)