#multiGPU = True #if os.environ["CUDA_VISIBLE_DEVICES"] in ["0", "1","2","3"]: # multiGPU = False #directory name configDir = '../' weightDir = 'training/' + era + '/reco' + ch scoreDir = era + '/score' + ch assignDir = era + '/assign' + ch #Options for data preparation input_files = [] input_features = [] signal_label = gen_label(ch) input_files.extend(train_files(ch, era)) input_features.extend(input_variables(ch)) input_features.append('genMatch') label_name = 'genMatch' bkg_drop_rate = 0.0 train_test_rate = 0.8 plot_figures = True mass_name = "jet12m" mass_decorr = False sklearn_based_overtraining_check = False #If it set to false, directly plot DNN scores #Check if the model and files already exist if not os.path.exists(os.path.join(configDir, weightDir + ver)): os.makedirs(os.path.join(configDir, weightDir + ver)) if not os.path.exists(os.path.join(configDir, scoreDir + ver)): os.makedirs(os.path.join(configDir, scoreDir + ver))
label_name = 'label' weight_name = 'EventWeight' weight_name_modi = 'SampleWeight' njets_cut = int(jetcat[1:2]) #Must be jXbX if njets_cut not in [3,4]: print("Check jet category") sys.exit() if len(jetcat) > 3: nbjets_cut = int(jetcat[3:4]) if nbjets_cut not in [2,3,4]: print("Check b jet category") sys.exit() else: nbjets_cut = 0 input_features = [] if all_features: input_features.extend(input_variables(jetcat)) else: try: input_features.extend(input_selected_bdt(ch, jetcat, era)) except: input_features.extend(input_variables(jetcat)) input_features.append(label_name) sig_files, bkg_files = train_files(ch, era) if not input_only: scaleST, scaleTT, scaleTTLJ, scaleTTLL, frac_sig, frac_bkg = evalScale(ch, era, sig_files, bkg_files) else: scaleST=1.0; scaleTT=1.0; scaleTTLJ=1.0; scaleTTLL=1.0; frac_sig=1.0; frac_bkg=1.0 #input_features.remove('STTT') #input_features.remove('channel') import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto()
trainB.Draw('hist same') testS.Draw('ep same') testB.Draw('ep same') label.Draw('same') label2.Draw('same') l.Draw('same') testS.Draw('axis same') c1.Print(era + '/bdt_plots/' + i + '/overtrain_' + ch + '_' + jetcat + '_' + method + '.pdf') l.Clear() label2.Clear() c1.Clear() #Correlation part axislabel = [] axislabel.extend(input_variables(jetcat)) corrS.SetTitle('') for i in range(0, len(axislabel)): corrS.GetXaxis().LabelsOption("v") corrS.GetXaxis().SetLabelSize(0.02) corrS.GetYaxis().SetLabelSize(0.02) corrS.GetZaxis().SetLabelSize(0.02) corrS.GetXaxis().SetLabelOffset(0.002) corrS.GetYaxis().SetLabelOffset(0.002) c1.SetGrid(1, 1) corrS.Draw('colz') label.Draw('same') #c1.Print(era+'bdt_plots/' + i + '/corr_'+ch+'_'+jetcat+'_sig.pdf') c1.Clear()