def build_model(self): premise = Sequential() premise.add( LSTM(input_shape=self.ds.X_p_train.shape[1:], output_dim=ve.HIDDEN_SIZE)) premise.add(Dropout(ve.DROPOUT_PROB)) hypothesis = Sequential() hypothesis.add( LSTM(input_shape=self.ds.X_h_train.shape[1:], output_dim=ve.HIDDEN_SIZE)) hypothesis.add(Dropout(ve.DROPOUT_PROB)) model = Sequential() model.add(Merge([premise, hypothesis], mode=ve.CONCAT)) model.add( Dense(output_dim=ve.HIDDEN_SIZE, activation=ve.TANH, W_regularizer=l2(self.hp.dense_l2))) model.add( Dense(output_dim=ve.NLI_CLASSES, activation=ve.SOFTMAX, W_regularizer=l2(self.hp.dense_l2))) ve.compile_other_model(model, self.hp.optimizer) return model
def build_model(self): vector_input = Sequential() vector_input.add( Embedding(input_dim=len(self.ds.vocab), output_dim=ve.EMBEDDING_SIZE, weights=[self.ds.weights], input_length=ve.WINDOW_SIZE)) caps_input = Sequential() caps_input.add( Embedding(input_dim=ve.CAPS_DIMS, output_dim=ve.CAPS_DIMS, weights=[np.eye(ve.CAPS_DIMS)], input_length=ve.WINDOW_SIZE)) model = Sequential() model.add(Merge([vector_input, caps_input], mode=ve.CONCAT)) model.add( Reshape(((ve.EMBEDDING_SIZE + ve.CAPS_DIMS) * ve.WINDOW_SIZE, ))) model.add(Dense(output_dim=ve.HIDDEN_SIZE)) model.add(Activation(ve.TANH)) model.add(Dropout(ve.DROPOUT_PROB)) model.add(Dense(input_dim=ve.HIDDEN_SIZE, output_dim=ve.NER_CLASSES)) model.add(Activation(ve.SOFTMAX)) ve.compile_other_model(model, self.hp.optimizer) return model
def build_model(self): premise = Sequential() premise.add(Embedding(input_dim=len(self.ds.vocab), output_dim=ve.EMBEDDING_SIZE, weights=[self.ds.weights], input_length=ve.NLI_MAX_LEN, W_regularizer=l2(self.hp.embedding_l2))) premise.add(LSTM(output_dim=ve.HIDDEN_SIZE)) premise.add(Dropout(ve.DROPOUT_PROB)) hypothesis = Sequential() hypothesis.add(Embedding(input_dim=len(self.ds.vocab), output_dim=ve.EMBEDDING_SIZE, weights=[self.ds.weights], input_length=ve.NLI_MAX_LEN, W_regularizer=l2(self.hp.embedding_l2))) hypothesis.add(LSTM(input_shape=self.ds.X_h_train.shape[1:], output_dim=ve.HIDDEN_SIZE)) hypothesis.add(Dropout(ve.DROPOUT_PROB)) model = Sequential() model.add(Merge([premise, hypothesis],mode=ve.CONCAT)) model.add(Dense(output_dim=ve.HIDDEN_SIZE,activation=ve.TANH, W_regularizer=l2(self.hp.dense_l2))) model.add(Dense(output_dim=ve.NLI_CLASSES,activation=ve.SOFTMAX, W_regularizer=l2(self.hp.dense_l2))) ve.compile_other_model(model, self.hp.optimizer) return model
def build_model(self): model = Sequential() model.add(Dense(input_shape=self.ds.X_train.shape[1:], output_dim=ve.HIDDEN_SIZE, W_regularizer=l2(self.hp.dense_l2))) model.add(Activation(ve.TANH)) model.add(Dropout(ve.DROPOUT_PROB)) model.add(Dense(input_dim=ve.HIDDEN_SIZE, output_dim=ve.POS_CLASSES, W_regularizer=l2(self.hp.dense_l2))) model.add(Activation(ve.SOFTMAX)) ve.compile_other_model(model, self.hp.optimizer) return model
def build_model(self): model = Sequential() model.add(Embedding(input_dim=len(self.ds.vocab), output_dim=ve.EMBEDDING_SIZE, weights=[self.ds.weights], input_length=ve.WINDOW_SIZE)) model.add(Reshape((ve.EMBEDDING_SIZE * ve.WINDOW_SIZE,))) model.add(Dense(output_dim=ve.HIDDEN_SIZE)) model.add(Activation(ve.TANH)) model.add(Dropout(ve.DROPOUT_PROB)) model.add(Dense(input_dim=ve.HIDDEN_SIZE, output_dim=ve.CHUNK_CLASSES)) model.add(Activation(ve.SOFTMAX)) ve.compile_other_model(model, self.hp.optimizer) return model
def build_model(self): model = Sequential() model.add( Embedding(input_dim=len(self.ds.vocab), output_dim=ve.EMBEDDING_SIZE, weights=[self.ds.weights], input_length=ve.QUESTIONS_MAX_LEN, W_regularizer=l2(self.hp.embedding_l2))) model.add(LSTM(output_dim=ve.HIDDEN_SIZE)) model.add(Dropout(ve.DROPOUT_PROB)) model.add( Dense(input_dim=ve.HIDDEN_SIZE, output_dim=ve.QUESTIONS_CLASSES, W_regularizer=l2(self.hp.dense_l2))) model.add(Activation(ve.SOFTMAX)) ve.compile_other_model(model, self.hp.optimizer) return model