def capture(self, factor_returns): """Capture ratio. Args: factor_returns (array_like): Benchmark return to compare returns against. Will broadcast.""" factor_returns = reshape_fns.broadcast_to( reshape_fns.to_2d(factor_returns, raw=True), reshape_fns.to_2d(self._obj, raw=True)) return self.wrap_reduced(nb.capture_nb(self.to_2d_array(), factor_returns, self.ann_factor))
def capture(self, benchmark_rets, wrap_kwargs=None): """Capture ratio. Args: benchmark_rets (array_like): Benchmark return to compare returns against. Will broadcast.""" benchmark_rets = reshape_fns.broadcast_to( reshape_fns.to_2d(benchmark_rets, raw=True), reshape_fns.to_2d(self._obj, raw=True)) wrap_kwargs = merge_dicts(dict(name_or_index='capture'), wrap_kwargs) return self.wrapper.wrap_reduced(nb.capture_nb( self.to_2d_array(), benchmark_rets, self.ann_factor ), **wrap_kwargs)
def capture(self, benchmark_rets: tp.ArrayLike, wrap_kwargs: tp.KwargsLike = None) -> tp.MaybeSeries: """Capture ratio. Args: benchmark_rets (array_like): Benchmark return to compare returns against. Will broadcast.""" benchmark_rets = broadcast_to(to_2d(benchmark_rets, raw=True), to_2d(self._obj, raw=True)) result = nb.capture_nb(self.to_2d_array(), benchmark_rets, self.ann_factor) wrap_kwargs = merge_dicts(dict(name_or_index='capture'), wrap_kwargs) return self.wrapper.wrap_reduced(result, **wrap_kwargs)