Exemple #1
0
def rsi_nb(ts, windows, is_ewm, is_min_periods):
    """For each window, calculate the RSI."""
    delta = diff_nb(ts, 1)[1:, :]  # otherwise ewma will be all NaN
    up, down = delta.copy(), delta.copy()
    up = set_by_mask_nb(up, up < 0, 0)
    down = np.abs(set_by_mask_nb(down, down > 0, 0))
    # Cache moving averages to effectively reduce the number of operations
    unique_windows = np.unique(windows)
    cache_d = dict()
    for i in range(unique_windows.shape[0]):
        if is_ewm:
            roll_up = ewm_mean_nb(up, unique_windows[i])
            roll_down = ewm_mean_nb(down, unique_windows[i])
        else:
            roll_up = rolling_mean_nb(up, unique_windows[i])
            roll_down = rolling_mean_nb(down, unique_windows[i])
        roll_up = prepend_nb(roll_up, 1, np.nan)  # bring to old shape
        roll_down = prepend_nb(roll_down, 1, np.nan)
        if is_min_periods:
            roll_up[:unique_windows[i], :] = np.nan
            roll_down[:unique_windows[i], :] = np.nan
        cache_d[unique_windows[i]] = roll_up, roll_down
    # Calculate RSI
    rsi = np.empty((ts.shape[0], ts.shape[1] * windows.shape[0]), dtype=f8)
    for i in range(windows.shape[0]):
        roll_up, roll_down = cache_d[windows[i]]
        rsi[:, i * ts.shape[1]:(i + 1) *
            ts.shape[1]] = 100 - 100 / (1 + roll_up / roll_down)
    return rsi
Exemple #2
0
def bb_nb(ts, ns, ks, is_ewm, is_min_periods):
    """For each N and K, calculate the corresponding upper, middle and lower BB bands."""
    # Cache moving averages to effectively reduce the number of operations
    unique_windows = np.unique(ns)
    cache_d = dict()
    for i in range(unique_windows.shape[0]):
        if is_ewm:
            ma = ewm_mean_nb(ts, unique_windows[i])
            mstd = ewm_std_nb(ts, unique_windows[i])
        else:
            ma = rolling_mean_nb(ts, unique_windows[i])
            mstd = rolling_std_nb(ts, unique_windows[i])
        if is_min_periods:
            ma[:unique_windows[i], :] = np.nan
            mstd[:unique_windows[i], :] = np.nan
        cache_d[unique_windows[i]] = ma, mstd
    # Calculate lower, middle and upper bands
    upper = np.empty((ts.shape[0], ts.shape[1] * ns.shape[0]), dtype=f8)
    middle = np.empty((ts.shape[0], ts.shape[1] * ns.shape[0]), dtype=f8)
    lower = np.empty((ts.shape[0], ts.shape[1] * ns.shape[0]), dtype=f8)
    for i in range(ns.shape[0]):
        ma, mstd = cache_d[ns[i]]
        upper[:, i * ts.shape[1]:(i + 1) *
              ts.shape[1]] = ma + ks[i] * mstd  # (MA + Kσ)
        middle[:, i * ts.shape[1]:(i + 1) * ts.shape[1]] = ma  # MA
        lower[:, i * ts.shape[1]:(i + 1) *
              ts.shape[1]] = ma - ks[i] * mstd  # (MA - Kσ)
    return upper, middle, lower
Exemple #3
0
def stoch_apply_func_nb(close_ts, high_ts, low_ts, k_window, d_window, ewm,
                        cache_dict):
    roll_min, roll_max = cache_dict[k_window]
    percent_k = 100 * (close_ts - roll_min) / (roll_max - roll_min)
    if ewm:
        percent_d = ewm_mean_nb(percent_k, d_window)
    else:
        percent_d = rolling_mean_nb(percent_k, d_window)
    percent_d[:k_window + d_window - 2, :] = np.nan  # min_periods for ewm
    return percent_k, percent_d
Exemple #4
0
def rsi_caching_nb(ts, windows, ewms):
    delta = diff_nb(ts)[1:, :]  # otherwise ewma will be all NaN
    up, down = delta.copy(), delta.copy()
    up = set_by_mask_nb(up, up < 0, 0)
    down = np.abs(set_by_mask_nb(down, down > 0, 0))
    # Cache
    cache_dict = dict()
    for i in range(windows.shape[0]):
        if (windows[i], int(ewms[i])) not in cache_dict:
            if ewms[i]:
                roll_up = ewm_mean_nb(up, windows[i])
                roll_down = ewm_mean_nb(down, windows[i])
            else:
                roll_up = rolling_mean_nb(up, windows[i])
                roll_down = rolling_mean_nb(down, windows[i])
            roll_up = prepend_nb(roll_up, 1, np.nan)  # bring to old shape
            roll_down = prepend_nb(roll_down, 1, np.nan)
            cache_dict[(windows[i], int(ewms[i]))] = roll_up, roll_down
    return cache_dict
Exemple #5
0
def ma_caching_nb(ts, windows, ewms):
    cache_dict = dict()
    for i in range(windows.shape[0]):
        if (windows[i], int(ewms[i])) not in cache_dict:
            if ewms[i]:
                ma = ewm_mean_nb(ts, windows[i])
            else:
                ma = rolling_mean_nb(ts, windows[i])
            cache_dict[(windows[i], int(ewms[i]))] = ma
    return cache_dict
Exemple #6
0
def macd_apply_func_nb(ts, fast_window, slow_window, signal_window, ewm,
                       cache_dict):
    fast_ma = cache_dict[(fast_window, int(ewm))]
    slow_ma = cache_dict[(slow_window, int(ewm))]
    macd_ts = fast_ma - slow_ma
    if ewm:
        signal_ts = ewm_mean_nb(macd_ts, signal_window)
    else:
        signal_ts = rolling_mean_nb(macd_ts, signal_window)
    signal_ts[:max(fast_window, slow_window) + signal_window -
              2, :] = np.nan  # min_periods for ewm
    return np.copy(fast_ma), np.copy(slow_ma), macd_ts, signal_ts
Exemple #7
0
def dmac_nb(ts, fast_windows, slow_windows, is_ewm, is_min_periods):
    """For each fast and slow window, calculate the corresponding SMA/EMA."""
    # Cache moving averages to effectively reduce the number of operations
    unique_windows = np.unique(np.concatenate((fast_windows, slow_windows)))
    cache_d = dict()
    for i in range(unique_windows.shape[0]):
        if is_ewm:
            ma = ewm_mean_nb(ts, unique_windows[i])
        else:
            ma = rolling_mean_nb(ts, unique_windows[i])
        if is_min_periods:
            ma[:unique_windows[i], :] = np.nan
        cache_d[unique_windows[i]] = ma
    # Concatenate moving averages out of cache and return
    fast_mas = np.empty((ts.shape[0], ts.shape[1] * fast_windows.shape[0]),
                        dtype=f8)
    slow_mas = np.empty((ts.shape[0], ts.shape[1] * fast_windows.shape[0]),
                        dtype=f8)
    for i in range(fast_windows.shape[0]):
        fast_mas[:, i * ts.shape[1]:(i + 1) *
                 ts.shape[1]] = cache_d[fast_windows[i]]
        slow_mas[:, i * ts.shape[1]:(i + 1) *
                 ts.shape[1]] = cache_d[slow_windows[i]]
    return fast_mas, slow_mas