def prepare(cfg, checkpoint): engine = build_engine(cfg.val_engine) load_weights(engine.model, checkpoint, map_location='cpu') device = torch.cuda.current_device() engine = MMDataParallel(engine.to(device), device_ids=[torch.cuda.current_device()]) dataset = build_dataset(cfg.data.val, dict(test_mode=True)) dataloader = build_dataloader(dataset, 1, 1, dist=False, shuffle=False) return engine, dataloader
def trainval(cfg, logger): for mode in cfg.modes: assert mode in ('train', 'val') dataloaders = dict() engines = dict() if 'train' in cfg.modes: dataset = build_dataset(cfg.data.train) dataloaders['train'] = build_dataloader(dataset, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, pin_memory=True) engine = build_engine(cfg.train_engine) engine = MMDataParallel(engine.cuda(), device_ids=[torch.cuda.current_device()]) engines['train'] = engine if 'val' in cfg.modes: # TODO implement validation dataset = build_dataset(cfg.data.val) dataloaders['val'] = build_dataloader(dataset, 1, cfg.data.workers_per_gpu, pin_memory=True, shuffle=False) engine = build_engine(cfg.val_engine) engine = MMDataParallel(engine.cuda(), device_ids=[torch.cuda.current_device()]) engines['val'] = engine hook_pool = HookPool(cfg.hooks, cfg.modes, logger) looper = EpochBasedLooper(cfg.modes, dataloaders, engines, hook_pool, logger, cfg.work_dir) if 'weights' in cfg: looper.load_weights(**cfg.weights) if 'train' in cfg.modes: if 'optimizer' in cfg: looper.load_optimizer(**cfg.optimizer) if 'meta' in cfg: looper.load_meta(**cfg.meta) else: if 'optimizer' in cfg: logger.warning('optimizer is not needed in train mode') if 'meta' in cfg: logger.warning('meta is not needed in train mode') looper.start(cfg.max_epochs)
def trainval(cfg, distributed, logger): for mode in cfg.modes: assert mode in ('train', 'val') dataloaders = dict() engines = dict() find_unused_parameters = cfg.get('find_unused_parameters', False) if 'train' in cfg.modes: dataset = build_dataset(cfg.data.train) dataloaders['train'] = build_dataloader(dataset, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, dist=distributed, seed=cfg.get('seed', None)) engine = build_engine(cfg.train_engine) if distributed: engine = MMDistributedDataParallel( engine.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: engine = MMDataParallel(engine.cuda(), device_ids=[torch.cuda.current_device()]) engines['train'] = engine if 'val' in cfg.modes: dataset = build_dataset(cfg.data.val, dict(test_mode=True)) dataloaders['val'] = build_dataloader(dataset, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, dist=distributed, shuffle=False) engine = build_engine(cfg.val_engine) if distributed: engine = MMDistributedDataParallel( engine.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: engine = MMDataParallel(engine.cuda(), device_ids=[torch.cuda.current_device()]) engines['val'] = engine hook_pool = HookPool(cfg.hooks, cfg.modes, logger) looper = EpochBasedLooper(cfg.modes, dataloaders, engines, hook_pool, logger, cfg.workdir) if isinstance(looper, EpochBasedLooper): looper.hook_pool.register_hook(dict(typename='WorkerInitHook')) if distributed: looper.hook_pool.register_hook( dict(typename='DistSamplerSeedHook')) if 'weights' in cfg: looper.load_weights(**cfg.weights) if 'train' in cfg.modes: if 'optimizer' in cfg: looper.load_optimizer(**cfg.optimizer) if 'meta' in cfg: looper.load_meta(**cfg.meta) else: if 'optimizer' in cfg: logger.warning('optimizer is not needed in train mode') if 'meta' in cfg: logger.warning('meta is not needed in train mode') looper.start(cfg.max_epochs)