def before_train(self, logs=None):
        """Call before_train of the managed callbacks."""
        super().before_train(logs)
        """Be called before the training process."""
        hpo_result = FileOps.load_pickle(
            FileOps.join_path(self.trainer.local_output_path,
                              'best_config.pickle'))
        logging.info("loading stage1_hpo_result \n{}".format(hpo_result))

        feature_interaction_score = hpo_result['feature_interaction_score']
        print('feature_interaction_score:', feature_interaction_score)
        sorted_pairs = sorted(feature_interaction_score.items(),
                              key=lambda x: abs(x[1]),
                              reverse=True)

        if ModelConfig.model_desc:
            fis_ratio = ModelConfig.model_desc["custom"]["fis_ratio"]
        else:
            fis_ratio = 1.0
        top_k = int(len(feature_interaction_score) * min(1.0, fis_ratio))
        self.selected_pairs = list(map(lambda x: x[0], sorted_pairs[:top_k]))

        # add selected_pairs
        setattr(ModelConfig.model_desc['custom'], 'selected_pairs',
                self.selected_pairs)
    def before_train(self, logs=None):
        """Call before_train of the managed callbacks."""
        super().before_train(logs)

        """Be called before the training process."""
        hpo_result = FileOps.load_pickle(FileOps.join_path(
            self.trainer.local_output_path, 'best_config.pickle'))
        logging.info("loading stage1_hpo_result \n{}".format(hpo_result))

        self.selected_pairs = hpo_result['feature_interaction']
        logging.info('feature_interaction:', self.selected_pairs)

        # add selected_pairs
        setattr(ModelConfig.model_desc['custom'], 'selected_pairs', self.selected_pairs)