def test_stocks_column_names(): stocks = data.stocks() assert type(stocks) is pd.DataFrame assert sorted(stocks.columns) == ["date", "price", "symbol"] stocks = data.stocks.raw() assert type(stocks) is bytes
def test_stocks_column_names(): stocks = data.stocks() assert type(stocks) is pd.DataFrame assert tuple(stocks.columns) == ('symbol', 'date', 'price') stocks = data.stocks.raw() assert type(stocks) is bytes
def test_stocks_column_names(): stocks = data.stocks() assert type(stocks) is pd.DataFrame assert sorted(stocks.columns) == ['date', 'price', 'symbol'] stocks = data.stocks.raw() assert type(stocks) is bytes
''' Trellis Area Sort Chart ----------------------- This example shows small multiples of an area chart. Stock prices of four large companies sorted by `['MSFT', 'AAPL', 'IBM', 'AMZN']` ''' # category: area charts import altair as alt from vega_datasets import data source = data.stocks() alt.Chart(source).transform_filter( alt.datum.symbol != 'GOOG' ).mark_area().encode( x='date:T', y='price:Q', color='symbol:N', row=alt.Row('symbol:N', sort=['MSFT', 'AAPL', 'IBM', 'AMZN']) ).properties(height=50, width=400)
import altair as alt from vega_datasets import data stocks = data.stocks() ___ = alt.Chart(stocks).mark_line().encode(x='date', y='price', color='symbol') ___ + ___
def test_download_stock_parsing(): stocks = data.stocks(use_local=False) assert all(stocks.dtypes == ['object', 'datetime64[ns]', 'float64'])
def test_stock_pivoted(): stocks = data.stocks(pivoted=True) assert stocks.index.name == 'date' assert all(stocks.columns == ['AAPL', 'AMZN', 'GOOG', 'IBM', 'MSFT'])
def test_stock_date_parsing(): stocks = data.stocks() assert all(stocks.dtypes == ['object', 'datetime64[ns]', 'float64'])
def test_download_stock_parsing(): stocks = data.stocks(use_local=False) assert all(stocks.dtypes == ["object", "datetime64[ns]", "float64"])
def test_stock_pivoted(): stocks = data.stocks(pivoted=True) assert stocks.index.name == "date" assert sorted(stocks.columns) == ["AAPL", "AMZN", "GOOG", "IBM", "MSFT"]
def test_stock_date_parsing(): stocks = data.stocks() assert all(stocks.dtypes == ["object", "datetime64[ns]", "float64"])