def test_foreign_latents_infer(seed):
    # Same as test.inference_quality.micro.test_latents.testHMMSP1

    builtins = builtin.builtInSPs()
    ripl = get_ripl(seed=seed)
    ripl.bind_foreign_sp("test_lazy_hmm", builtins["make_lazy_hmm"])

    ripl.assume(
        "f", """
(test_lazy_hmm
 (simplex 0.5 0.5)
 (matrix (array (array 0.7 0.3)
                (array 0.3 0.7)))
 (matrix (array (array 0.9 0.2)
                (array 0.1 0.8))))
""")
    ripl.observe("(f 1)", "integer<0>")
    ripl.observe("(f 2)", "integer<0>")
    ripl.observe("(f 3)", "integer<1>")
    ripl.observe("(f 4)", "integer<0>")
    ripl.observe("(f 5)", "integer<0>")
    ripl.predict("(f 6)", label="pid")
    ripl.predict("(f 7)")
    ripl.predict("(f 8)")

    predictions = collectSamples(ripl, "pid")
    ans = [(0, 0.6528), (1, 0.3472)]
    return reportKnownDiscrete(ans, predictions)
def test_foreign_aaa_uc():
    builtins = builtin.builtInSPs()
    ripl = get_ripl()
    ripl.bind_foreign_sp("test_sym_dir_cat", builtins["make_uc_sym_dir_cat"])

    ripl.assume("f", "(test_sym_dir_cat 1 1)")
    assert ripl.sample("f")["counts"] == [0]

    ripl.observe("(f)", "integer<0>")
    assert ripl.sample("f")["counts"] == [1]

    ripl.infer(defaultInfer())
    assert ripl.sample("f")["counts"] == [1]
def test_foreign_latents():
    builtins = builtin.builtInSPs()
    ripl = get_ripl()
    ripl.bind_foreign_sp("test_lazy_hmm", builtins["make_lazy_hmm"])

    ripl.assume("f", "(test_lazy_hmm (simplex 1) (id_matrix 1) (id_matrix 1))")
    assert ripl.sample("f")[0] == []

    ripl.observe("(f 1)", "integer<0>")
    assert ripl.sample("f")[0] == [np.matrix([[1]]), np.matrix([[1]])]

    ripl.infer(defaultInfer())
    assert ripl.sample("f")[0] == [np.matrix([[1]]), np.matrix([[1]])]
Exemple #4
0
    def __init__(self, seed):
        self.results = {}
        self.env = env.VentureEnvironment()
        for name, val in builtin.builtInValues().iteritems():
            self.bindPrimitiveName(name, val)
        for name, sp in builtin.builtInSPs().iteritems():
            self.bindPrimitiveSP(name, sp)
        self.sealEnvironment()  # New frame so users can shadow globals

        assert seed is not None
        rng = random.Random(seed)
        self.np_rng = npr.RandomState(rng.randint(1, 2**31 - 1))
        self.py_rng = random.Random(rng.randint(1, 2**31 - 1))
def test_foreign_aaa_infer(seed):
    # Same as test.inference_quality.micro.test_misc_aaa.testMakeBetaBernoulli1
    builtins = builtin.builtInSPs()
    ripl = get_ripl(seed=seed)
    ripl.bind_foreign_sp("test_beta_bernoulli",
                         builtins["make_uc_beta_bernoulli"])

    ripl.assume("a", "(normal 10.0 1.0)")
    ripl.assume("f", "(test_beta_bernoulli a a)")
    ripl.predict("(f)", label="pid")

    for _ in range(20):
        ripl.observe("(f)", "true")

    predictions = collectSamples(ripl, "pid")
    ans = [(False, .25), (True, .75)]
    return reportKnownDiscrete(ans, predictions)
Exemple #6
0
 def __init__(self, seed, trace=None):
     assert trace is None or isinstance(trace, puma.Trace)
     self.py_rng = random.Random(None)
     self.np_rng = npr.RandomState(None)
     if trace is None:
         self.trace = puma.Trace()
         self.set_seed(seed)
         for name, sp in builtInSPs().iteritems():
             if self.trace.boundInGlobalEnv(name):
                 # Already there
                 pass
             else:
                 # Use the Python SP as a fallback to not having a fast one
                 self.bindPrimitiveSP(name, WarningSP(name, sp))
     else:
         assert isinstance(trace, puma.Trace)
         self.trace = trace
         py_state, np_state = seed
         self.py_rng.setstate(py_state)
         self.np_rng.set_state(np_state)
Exemple #7
0
def check_foreign_sp(mode):
    v = get_ripl()
    builtins = builtin.builtInSPs()
    resample = '[INFER (resample{0} 1)]'.format(mode)
    v.execute_instruction(resample)
    v.bind_foreign_sp('test_binomial', builtins['binomial'])
    v.bind_foreign_sp('test_sym_dir_cat', builtins['make_sym_dir_cat'])
    test_binomial_result = 1
    test_sym_dir_result = {
        'alpha': 1.0,
        'counts': [0],
        'n': 1,
        'type': 'sym_dir_cat'
    }
    eq_(v.sample('(test_binomial 1 1)'), test_binomial_result)
    eq_(v.sample('(test_sym_dir_cat 1 1)'), test_sym_dir_result)
    engine = v.sivm.core_sivm.engine
    dumped = engine.model.retrieve_dump(0)
    restored = engine.model.restore_trace(dumped)
    engine.model.create_trace_pool([restored])
    # Make sure that the restored trace still has the foreign SP's
    eq_(v.sample('(test_binomial 1 1)'), test_binomial_result)
    eq_(v.sample('(test_sym_dir_cat 1 1)'), test_sym_dir_result)
def testForeignInfSPs():
    r = get_ripl(persistent_inference_trace=True)
    r.bind_foreign_inference_sp("my_mul", builtin.builtInSPs()["mul"])
    r.infer("(resimulation_mh default one (+ (my_mul 2 2) 1))")