class RemoteDeviceUnderTest(DeviceUnderTest):
    def add_options(self, parser):
        add_communication_options(parser)

        parser.add_option("-n",
                          "--node",
                          dest="node",
                          metavar="ADDR",
                          type="int",
                          help="Connect to node with ZigBit address ADDR")

    def setup(self, options):

        if not options.verbosity:
            options.verbosity = "warning"

        coor = get_coordinator(options)
        coor.post("prog/firstcall", "1")

        self.node = ALHProxy(coor, options.node)
        self.node.post("prog/firstcall", "1")

        self.spectrumsensor = SpectrumSensor(self.node)

        self.config_list = self.spectrumsensor.get_config_list()
        if not self.config_list.configs:
            raise Exception("Device returned no configurations. "
                            "It is still scanning or not responding.")

        self.config = self.config_list.get_config(self.device_id,
                                                  self.config_id)

    def get_fw_version(self):
        return self.node.get("hello").strip()

    def get_status(self):
        resp = self.node.get("sensing/deviceStatus").strip()
        return [v.strip() for v in resp.split("\n")]

    def measure_ch_impl(self, ch, n):
        sweep_config = SweepConfig(self.config, ch, ch + 1, 1)

        duration = int(math.ceil(self.config.time * n * 1e-3 + 1.0))

        now = time.time()
        sensor_program = SpectrumSensorProgram(sweep_config, now + 1, duration,
                                               2)

        self.spectrumsensor.program(sensor_program)
        while not self.spectrumsensor.is_complete(sensor_program):
            time.sleep(1)

        result = self.spectrumsensor.retrieve(sensor_program)

        measurements = [sweep.data[0] for sweep in result.sweeps]
        measurements = measurements[:n]

        assert len(measurements) == n
        return measurements
Exemple #2
0
class RemoteDeviceUnderTest(DeviceUnderTest):
    def add_options(self, parser):
        add_communication_options(parser)

        parser.add_option(
            "-n", "--node", dest="node", metavar="ADDR", type="int", help="Connect to node with ZigBit address ADDR"
        )

    def setup(self, options):

        if not options.verbosity:
            options.verbosity = "warning"

        coor = get_coordinator(options)
        coor.post("prog/firstcall", "1")

        self.node = ALHProxy(coor, options.node)
        self.node.post("prog/firstcall", "1")

        self.spectrumsensor = SpectrumSensor(self.node)

        self.config_list = self.spectrumsensor.get_config_list()
        if not self.config_list.configs:
            raise Exception("Device returned no configurations. " "It is still scanning or not responding.")

        self.config = self.config_list.get_config(self.device_id, self.config_id)

    def get_fw_version(self):
        return self.node.get("hello").strip()

    def get_status(self):
        resp = self.node.get("sensing/deviceStatus").strip()
        return [v.strip() for v in resp.split("\n")]

    def measure_ch_impl(self, ch, n):
        sweep_config = SweepConfig(self.config, ch, ch + 1, 1)

        duration = int(math.ceil(self.config.time * n * 1e-3 + 1.0))

        now = time.time()
        sensor_program = SpectrumSensorProgram(sweep_config, now + 1, duration, 2)

        self.spectrumsensor.program(sensor_program)
        while not self.spectrumsensor.is_complete(sensor_program):
            time.sleep(1)

        result = self.spectrumsensor.retrieve(sensor_program)

        measurements = [sweep.data[0] for sweep in result.sweeps]
        measurements = measurements[:n]

        assert len(measurements) == n
        return measurements
Exemple #3
0
    def test_retrieve(self):
        class MockALH(ALHProtocol):
            def _get(self, resource, *args):
                if b"Info" in resource:
                    return b"status=COMPLETE,size=14"
                else:
                    return b"\x00\x00\x00\x00\x00\x00\x01\x00\x02\x00\x91m\x00i"

        alh = MockALH()
        ss = SpectrumSensor(alh)

        sc = self._get_sc()
        p = SpectrumSensorProgram(sc, 0, 10, 1)

        r = ss.retrieve(p)

        self.assertEqual(len(r.sweeps), 1)
        self.assertEqual(r.sweeps[0].data, [0., .01, .02])
        self.assertEqual(r.sweeps[0].timestamp, 0)
Exemple #4
0
	def test_retrieve(self):
		class MockALH(ALHProtocol):
			def _get(self, resource, *args):
				if b"Info" in resource:
					return b"status=COMPLETE,size=14"
				else:
					return b"\x00\x00\x00\x00\x00\x00\x01\x00\x02\x00\x91m\x00i"

		alh = MockALH()
		ss = SpectrumSensor(alh)

		sc = self._get_sc()
		p = SpectrumSensorProgram(sc, 0, 10, 1)

		r = ss.retrieve(p)

		self.assertEqual(len(r.sweeps), 1)
		self.assertEqual(r.sweeps[0].data, [0., .01, .02])
		self.assertEqual(r.sweeps[0].timestamp, 0)
Exemple #5
0
 def senseStart(self, time_start, time_duration , slot_id):
     #start spectrum sensing on node with the given configuration (self.sweep_config it is what matter)
     #may perform a few frequency sweeps, depends on the time duration 
     
     #this can generate exception if sweep_config is None
     if self.sweep_config is None:
         print "Cannot start sensing, configuration is missing"
         return None
    
     #get a program object.
     program = SpectrumSensorProgram(self.sweep_config, time_start, time_duration , slot_id )
     
     #get sensor object, with this we'll program the node
     sensor =  SpectrumSensor(self.node)
 
     #program the sensor
     sensor.program(program)
     
     #waiting for the sensor to finish the job
     while not sensor.is_complete(program):
         print "waiting..."
         time.sleep(1)
         
         if time.time() > (program.time_start + program.time_duration + 60):
             raise Exception("Something went wrong with the sensing")
     
     print "Experiment is finished. retrieving data."
     result = sensor.retrieve(program)
     
     #try to make a folder
     try:
         os.mkdir("./data")
     except OSError:
         pass
     
     try:
         os.mkdir("./data/coor_%d" %self.coordinator_id)
     except OSError:
         pass
     
     #write results in a file
     result.write("./data/coor_%d/node_%s.dat" %(self.coordinator_id ,self.node_id))
class NodePair(object):

    # Object constructor takes two nodes: Node doing the signal
    # transmission and node doing power measurements.
    def __init__(self, txnode, rxnode):
        # We set up the SignalGenerator and SpectrumSensor objects here
        # for later use. We also query both nodes for their
        # corresponding lists of available hardware configurations.
        #
        # Since hardware will not change during the experiment, we only
        # do the query once in object constructor. This makes repeated
        # measurements faster.
        self.generator = SignalGenerator(txnode)
        self.generator_cl = self.generator.get_config_list()

        self.sensor = SpectrumSensor(rxnode)
        self.sensor_cl = self.sensor.get_config_list()

    # This method performs the power measurement. f_hz parameter is the
    # central frequency in hertz on which the channel measurement will be done.
    # ptx_dbm is the transmission power in dbm. If ptx_dbm is None, then
    # the transmitting node will remain silent.
    def measure(self, f_hz, ptx_dbm):
        now = time.time()

        if ptx_dbm is not None:
            # If transmission was requested, setup the transmitter.
            tx_config = self.generator_cl.get_tx_config(f_hz, ptx_dbm)
            if tx_config is None:
                raise Exception("Node can not scan specified frequency range.")

            generator_p = SignalGeneratorProgram(tx_config, now + 1, 14)
            self.generator.program(generator_p)

        # Setup the receiver for power measurement at the same
        # frequency as the transmitter. We will only sense a single
        # frequency, hence both start and stop parameters of the sweep
        # are set to f_hz.
        sweep_config = self.sensor_cl.get_sweep_config(f_hz, f_hz, 400e3)
        if sweep_config is None:
            raise Exception("Node can not scan specified frequency range.")

        sensor_p = SpectrumSensorProgram(sweep_config, now + 3, 10, 1)
        self.sensor.program(sensor_p)

        # Note that the transmit interval is longer than the receive
        # interval:
        #
        # now    + 1        + 3         /           + 13       + 15
        # |      tx start   rx start    \           rx stop    tx stop
        # |      |          |           /           |          |
        # |      |          |===========\===========|          |
        # |      |             receive  /           |          |
        # |      |                      \                      |
        # |      |======================/======================|
        #           transmit
        #
        # This is to make sure that signal transmission is happening
        # during the whole time the receiver is measuring signal power.
        # Start times may differ +/- 1 second due to unsynchronized
        # clocks and management network latency.

        while not self.sensor.is_complete(sensor_p):
            print "waiting..."
            time.sleep(2)

        # Retrieve the data and return a single vector with power
        # measurements (in dBm) from the sensing node.
        result = self.sensor.retrieve(sensor_p)

        return np.array(result.get_data())[:, 0]

    # This method calculates the channel gain between the nodes.
    def get_channel_gain(self, f_hz, ptx_dbm):
        def db_to_mw(db):
            return 10.**(db / 10.)

        def mw_to_db(mw):
            return 10. * np.log10(mw)

        # First, measure just the noise level on the receiving node.
        # Transmitter is turned off.
        pnoise_dbm = self.measure(f_hz, None)

        # Second, measure the received signal power level with the
        # transmitter turned on.
        prx_dbm = self.measure(f_hz, ptx_dbm)

        # Convert all power values to linear scale.
        ptx_mw = db_to_mw(ptx_dbm)
        pnoise_mw = db_to_mw(pnoise_dbm)
        prx_mw = db_to_mw(prx_dbm)

        # Take the mean of both noise and received signal power
        # measurements.
        pnoise_mw_mean = np.mean(pnoise_mw)
        prx_mw_mean = np.mean(prx_mw)

        print "p_noise = %.1f dBm (mean=%e mW std=%e mW)" % (
            mw_to_db(pnoise_mw_mean), pnoise_mw_mean, np.std(pnoise_mw))
        print "p_rx    = %.1f dBm (mean=%e mW std=%e mW)" % (
            mw_to_db(prx_mw_mean), prx_mw_mean, np.std(prx_mw))

        # Use the mean values to estimate the channel gain.
        h_mean = (prx_mw_mean - pnoise_mw_mean) / ptx_mw

        # Convert back to logarithmic scale.
        h_mean_db = mw_to_db(h_mean)

        print "h = %.1f dB" % (h_mean_db, )

        return h_mean_db
def main():
	# Turn on logging so that we can see ALH requests happening in the
	# background.
	logging.basicConfig(level=logging.INFO)

	coor = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 10001)

	# Nodes 16 and 17 are equipped with an 2.4 GHz tranceiver (CC2500 on
	# SNE-ISMTV-24) that is capable of transmitting and receiving on the
	# 2.4 GHz ISM band.
	node16 = alh.ALHProxy(coor, 16) 
	node17 = alh.ALHProxy(coor, 17)

	# We will use node 16 as a signal generator. We wrap its ALHProxy
	# object with a SignalGenerator object for convenience.
	generator = SignalGenerator(node16)
	
	# Set up a transmission configuration for 2.425 GHz and 0 dBm
	generator_config_list = generator.get_config_list()

	tx_config = generator_config_list.get_tx_config(2425e6, 0)
	if tx_config is None:
		raise Exception("Node can not scan specified frequency range.")

	# We will use node 17 as a spectrum sensor. Again, we wrap it with a
	# SpectrumSensor object for convenience.
	sensor = SpectrumSensor(node17)

	# We set up a frequency sweep configuration covering 2.40 GHz to 2.45
	# GHz band with 400 kHz steps.
	sensor_config_list = sensor.get_config_list()

	sweep_config = sensor_config_list.get_sweep_config(2400e6, 2450e6, 400e3)
	if sweep_config is None:
		raise Exception("Node can not scan specified frequency range.")

	# Take note of current time.
	now = time.time()

	# SignalGeneratorProgram and SpectrumSensorProgram objects allow us to
	# program signal generation and spectrum sensing tasks in advance. 
	#
	# In this case, we setup a signal generation task using the
	# configuration we prepared above starting 10 seconds from now and
	# lasting for 20 seconds.
	#
	# Similarly for spectrum sensing, we setup a task using frequency sweep
	# we prepared above starting 5 seconds from now and lasting for 30
	# seconds. Results of the measurement will be stored in slot 4.
	generator_program = SignalGeneratorProgram(tx_config, now + 10, 20)
	sensor_program = SpectrumSensorProgram(sweep_config, now + 5, 30, 4)

	# Now actually send instructions over the management network to nodes
	# in the testbed.
	generator.program(generator_program)
	sensor.program(sensor_program)

	# Query the spectrum sensing node and wait until the task has been
	# completed.
	while not sensor.is_complete(sensor_program):
		print "waiting..."
		time.sleep(2)

	# Retrieve spectrum sensing results. This might take a while since the
	# management mesh network is slow.
	result = sensor.retrieve(sensor_program)

	# Write results into a CSV file.
	result.write("06-programmed-tasks.dat")
def main():

	# Turn on logging so that we can see requests and responses in the
	# terminal. This is useful to keep track of what is going on during the
	# experiment.
	logging.basicConfig(level=logging.INFO)

	# We must first create an object representing the coordinator node.
	# Each cluster in the LOG-a-TEC has its own coordinator and all
	# communication with the nodes must go through it.
	#
	# The parameters used here correspond to the LOG-a-TEC City Center
	# out-door cluster (see LOG-a-TEC documentation for other valid
	# options).
	#
	# Note that you must have a valid user name and password saved in an
	# "alhrc" file in order for this to work. See vesna-alh-tools README
	# for instructions on how to do that.
	#
	# Also make sure you reserved the cluster in the calendar before
	# running the experiment!
	coor = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 10002)

	# We will be using node 45 in this example. First we create a generic
	# node object for it.
	node = alh.ALHProxy(coor, 45)

	# We will use our node as a spectrum sensor. Here, we wrap the generic
	# node object with the SpectrumSensor class that provides a convenient
	# interface to the spectrum sensing capabilities of the node's radio
	# hardware.
	sensor = SpectrumSensor(node)

	# Request the list of spectrum sensing configurations that the node
	# supports.
	#
	# Node 45 is equipped with a SNE-ISMTV-2400 radio board that contains a
	# CC2500 reconfigurable transceiver. This tranceiver supports a number
	# of configurations that cover the 2.4 GHz ISM band.
	sensor_config_list = sensor.get_config_list()

	# Let's print the list out in a nice format for future reference.
	print
	print "Spectrum sensing devices and configurations available"
	print "====================================================="
	print sensor_config_list
	print


	# For a demonstration, we'll choose to sense the whole ISM band between
	# 2.4 GHz and 2.5 GHz with 400 kHz steps. We create a SweepConfig object
	# that describes this frequency range.
	sweep_config = sensor_config_list.get_sweep_config(2400e6, 2500e6, 400e3)
	if sweep_config is None:
		raise Exception("Node can not scan specified frequency range.")

	# Take note of current time.
	now = time.time()

	# SpectrumSensorProgram object allows us to program a node to perform a
	# spectrum sensing task in advance. We'll setup a task for sensing the
	# frequency range we selected above, starting 5 seconds from now and
	# lasting for 30 seconds.
	#
	# Each node has local slots for temporary storage of spectrum sensing
	# results. Since we are only performing one scan of the spectrum, it
	# doesn't matter which slot we use. Let's pick slot 1.
	sensor_program = SpectrumSensorProgram(sweep_config, now + 5, 30, 1)

	# Now we actually send the programming instructions over the testbed's
	# management network to the node.
	sensor.program(sensor_program)

	# Wait until the programmed task has been completed.
	while not sensor.is_complete(sensor_program):
		print "patience..."
		time.sleep(2)

	# The task is complete. We must now retrieve spectrum sensing results
	# back from the node to our computer. This might take a while since the
	# management mesh network is slow.
	result = sensor.retrieve(sensor_program)

	# Finally, we write results into a CSV file for further analysis.
	#
	# Alternatively, we could do something else with the results directly
	# from this program. The SpectrumSensorResult object provides some
	# convenient methods for accessing the result of the scan.
	result.write("logatec.csv")
Exemple #9
0
def main():

    # Turn on logging so that we can see requests and responses in the
    # terminal. This is useful to keep track of what is going on during the
    # experiment.
    logging.basicConfig(level=logging.INFO)

    # We must first create an object representing the coordinator node.
    # Each cluster in the LOG-a-TEC has its own coordinator and all
    # communication with the nodes must go through it.
    #
    # The parameters used here correspond to the LOG-a-TEC City Center
    # out-door cluster (see LOG-a-TEC documentation for other valid
    # options).
    #
    # Note that you must have a valid user name and password saved in an
    # "alhrc" file in order for this to work. See vesna-alh-tools README
    # for instructions on how to do that.
    #
    # Also make sure you reserved the cluster in the calendar before
    # running the experiment!
    coor = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 10002)

    # We will be using node 45 in this example. First we create a generic
    # node object for it.
    node = alh.ALHProxy(coor, 45)

    # We will use our node as a spectrum sensor. Here, we wrap the generic
    # node object with the SpectrumSensor class that provides a convenient
    # interface to the spectrum sensing capabilities of the node's radio
    # hardware.
    sensor = SpectrumSensor(node)

    # Request the list of spectrum sensing configurations that the node
    # supports.
    #
    # Node 45 is equipped with a SNE-ISMTV-2400 radio board that contains a
    # CC2500 reconfigurable transceiver. This tranceiver supports a number
    # of configurations that cover the 2.4 GHz ISM band.
    sensor_config_list = sensor.get_config_list()

    # Let's print the list out in a nice format for future reference.
    print
    print "Spectrum sensing devices and configurations available"
    print "====================================================="
    print sensor_config_list
    print

    # For a demonstration, we'll choose to sense the whole ISM band between
    # 2.4 GHz and 2.5 GHz with 400 kHz steps. We create a SweepConfig object
    # that describes this frequency range.
    sweep_config = sensor_config_list.get_sweep_config(2400e6, 2500e6, 400e3)
    if sweep_config is None:
        raise Exception("Node can not scan specified frequency range.")

    # Take note of current time.
    now = time.time()

    # SpectrumSensorProgram object allows us to program a node to perform a
    # spectrum sensing task in advance. We'll setup a task for sensing the
    # frequency range we selected above, starting 5 seconds from now and
    # lasting for 30 seconds.
    #
    # Each node has local slots for temporary storage of spectrum sensing
    # results. Since we are only performing one scan of the spectrum, it
    # doesn't matter which slot we use. Let's pick slot 1.
    sensor_program = SpectrumSensorProgram(sweep_config, now + 5, 30, 1)

    # Now we actually send the programming instructions over the testbed's
    # management network to the node.
    sensor.program(sensor_program)

    # Wait until the programmed task has been completed.
    while not sensor.is_complete(sensor_program):
        print "patience..."
        time.sleep(2)

    # The task is complete. We must now retrieve spectrum sensing results
    # back from the node to our computer. This might take a while since the
    # management mesh network is slow.
    result = sensor.retrieve(sensor_program)

    # Finally, we write results into a CSV file for further analysis.
    #
    # Alternatively, we could do something else with the results directly
    # from this program. The SpectrumSensorResult object provides some
    # convenient methods for accessing the result of the scan.
    result.write("logatec.csv")
def main():
    # Turn on logging so that we can see ALH requests happening in the
    # background.
    logging.basicConfig(level=logging.INFO)

    coor = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", 10001)

    # Nodes 16 and 17 are equipped with an 2.4 GHz tranceiver (CC2500 on
    # SNE-ISMTV-24) that is capable of transmitting and receiving on the
    # 2.4 GHz ISM band.
    node16 = alh.ALHProxy(coor, 16)
    node17 = alh.ALHProxy(coor, 17)

    # We will use node 16 as a signal generator. We wrap its ALHProxy
    # object with a SignalGenerator object for convenience.
    generator = SignalGenerator(node16)

    # Set up a transmission configuration for 2.425 GHz and 0 dBm
    generator_config_list = generator.get_config_list()

    tx_config = generator_config_list.get_tx_config(2425e6, 0)
    if tx_config is None:
        raise Exception("Node can not scan specified frequency range.")

    # We will use node 17 as a spectrum sensor. Again, we wrap it with a
    # SpectrumSensor object for convenience.
    sensor = SpectrumSensor(node17)

    # We set up a frequency sweep configuration covering 2.40 GHz to 2.45
    # GHz band with 400 kHz steps.
    sensor_config_list = sensor.get_config_list()

    sweep_config = sensor_config_list.get_sweep_config(2400e6, 2450e6, 400e3)
    if sweep_config is None:
        raise Exception("Node can not scan specified frequency range.")

    # Take note of current time.
    now = time.time()

    # SignalGeneratorProgram and SpectrumSensorProgram objects allow us to
    # program signal generation and spectrum sensing tasks in advance.
    #
    # In this case, we setup a signal generation task using the
    # configuration we prepared above starting 10 seconds from now and
    # lasting for 20 seconds.
    #
    # Similarly for spectrum sensing, we setup a task using frequency sweep
    # we prepared above starting 5 seconds from now and lasting for 30
    # seconds. Results of the measurement will be stored in slot 4.
    generator_program = SignalGeneratorProgram(tx_config, now + 10, 20)
    sensor_program = SpectrumSensorProgram(sweep_config, now + 5, 30, 4)

    # Now actually send instructions over the management network to nodes
    # in the testbed.
    generator.program(generator_program)
    sensor.program(sensor_program)

    # Query the spectrum sensing node and wait until the task has been
    # completed.
    while not sensor.is_complete(sensor_program):
        print "waiting..."
        time.sleep(2)

    # Retrieve spectrum sensing results. This might take a while since the
    # management mesh network is slow.
    result = sensor.retrieve(sensor_program)

    # Write results into a CSV file.
    result.write("06-programmed-tasks.dat")
Exemple #11
0
class GameNode:

    # transmitting and receiving configurations
    sweepConfig = None
    txConfig = None
    # reference to sensor and generator objects
    sensorNode = None
    generatorNode = None

    def __init__(self, coordinatorId, nodeId, showLog=True):
        """node constructor

        Keywords arguments:
        coordinatorId -- Numerical cluster id.
        nodeId -- id number of node.
        """

        # get coordinator object
        self.coordinator = alh.ALHWeb("https://crn.log-a-tec.eu/communicator", coordinatorId)
        # get node object
        self.node = alh.ALHProxy(self.coordinator, nodeId)
        # save Ids
        self.coordinatorId = coordinatorId
        self.nodeId = nodeId

        if showLog:
            logging.basicConfig(level=logging.INFO)

    def nodeTest(self):
        """Print a string if node is active"""
        print self.node.get("sensor/mcuTemp")

    def coordinatorTest(self):
        """Print a string if coordinator is active"""
        print self.coordinator.get("hello")

    def getNodeID(self):
        return self.nodeId

    def getSenseConfig(self):
        """just get a configuration list so I can see it"""
        SpectrumSensor(self).get_config_list()

    def getGeneratorConfig(self):
        """just get a configuration list so I can see it"""
        SignalGenerator(self).get_config_list()

    def setSenseConfiguration(self, startFreqHz, endFreqHz, stepFerqHz):
        """Set sensing configuration.
        Measure the power in frequency band [startFrewHz, endFreqHz] with a predefined step.

        startFreqHz -- Lower bound of the frequency band to check (inclusive)
        endFreqHz -- Upper bound of the frequency band to check (inclusive)
        stepFerqHz -- Frequency step
        """
        self.sensorNode = SpectrumSensor(self.node)
        sensorConfigList = self.sensorNode.get_config_list()
        self.sweepConfig = sensorConfigList.get_sweep_config(startFreqHz, endFreqHz, stepFerqHz)

        if self.sweepConfig is None:
            raise Exception("Something went wrong with the sweepConfig. sweepConfig is None")

    def setSenseConfigurationChannel(self, startCh, endCh, stepCh):
        """Set sensing configuration.
        Measure the power from start_ch to stop_ch with predefined step

        startCh -- Lowest frequency channel to sweep
        endCh -- One past the highest frequency channel to sweep
        stepCh -- How many channels in a step
        """
        self.sensorNode = SpectrumSensor(self.node)
        sensorConfigList = self.sensorNode.get_config_list()
        self.sweepConfig = SweepConfig(sensorConfigList.get_config(0, 0), startCh, endCh, stepCh)

        if self.sweepConfig is None:
            raise Exception("Something went wrong with the sweepConfig. sweepConfig is None")

    def setSenseConfigurationFuulSweep(self):
        """Set sensing configuration.
        This method will sense the entire band that device supports.
        """
        self.sensorNode = SpectrumSensor(self.node)
        sensorConfigList = self.sensorNode.get_config_list()
        #         self.sweepConfig = SpectrumSensor(self.node).get_config_list().get_config(0,0).get_full_sweep_config()
        self.sweepConfig = sensorConfigList.get_config(0, 0).get_full_sweep_config()
        if self.sweepConfig is None:
            raise Exception("Something went wrong with the sweepConfig. sweepConfig is None")

    def senseStart(self, timeStart, timeDuration, slotID):
        """Start spectrum sensing on node with predefined configuration (self.sweep_config).
        May perform a few frequency sweeps, depends on the time duration.
        If sweepConfig is None raise exception.

        timeStart -- Time to start the task (UNIX timestamp).
        timeDuration -- Duration of the task in seconds.
        slotID -- Numerical slot id used for storing measurements.
        """
        if self.sweepConfig is None:
            print "Cannot start Sensing. Configuration is missing!!"
            return None

        # get program object
        program = SpectrumSensorProgram(self.sweepConfig, timeStart, timeDuration, slotID)

        # get sensor object and program the node
        self.sensorNode.program(program)

        # wait for sensor to finish the job
        while not self.sensorNode.is_complete(program):
            print "waiting..."
            time.sleep(1)

            if time.time() > (program.time_start + program.time_duration + 60):
                raise Exception("Something went wrong when sensing")

        print "Sensing finished, retrieving data."
        result = self.sensorNode.retrieve(program)

        # for simplicity save data in a folder
        try:
            os.mkdir("./data")
        except OSError:
            pass
        try:
            os.mkdir("./data/coor_%d" % (self.coordinatorId))
        except OSError:
            pass

        # write data, overwrite existing file
        result.write("./data/coor_%d/node_%d.dat" % (self.coordinatorId, self.nodeId))

    def senseStartQuick(self):
        """returns a list : [[frequencies] , [power_dbm]]
        Starts spectrum sensing on node with predefined configuration (self.sweepConfig).
        This method will do a quick step. Use this if time is critical!
        Bandwidth you can measure in this case is limited.
        This will perform a single frequency step with the sweep method defined in the SpectrumSensor class.

        If sweepConfig is None raise exception.
        """
        if self.sweepConfig is None:
            print "Cannot start Sensing. Configuration is missing!!"
            return None

        sweep = SpectrumSensor(self.node).sweep(self.sweepConfig)

        # get frequency list
        fHz = self.sweepConfig.get_hz_list()

        dataReceived = []
        dataReceived.append(fHz)
        dataReceived.append(sweep.data)

        return dataReceived

    def setGeneratorConfiguration(self, fHz, powerDBm):
        """Set configuration for signal generation.

        fHz -- Frequency to generate.
        powerDBm -- Transmission power.
        """
        self.generatorNode = SignalGenerator(self.node)
        generatorConfigList = self.generatorNode.get_config_list()
        self.txConfig = generatorConfigList.get_tx_config(fHz, powerDBm)

        if self.txConfig is None:
            raise Exception("Something went wrong with configuration, txConfig is None.")

    def setGeneratorConfigurationChannel(self, fCh, powerDBm):
        """Set configuration for signal generation.

        fHz -- Frequency to generate.
        powerDBm -- Transmission power.
        """
        self.generatorNode = SignalGenerator(self.node)
        generatorConfigList = self.generatorNode.get_config_list()
        self.txConfig = TxConfig(generatorConfigList.get_config(0, 0), fCh, powerDBm)

        if self.txConfig is None:
            raise Exception("Something went wrong with configuration, txConfig is None.")

    def generatorStart(self, timeStart, timeDuration):
        """Start signal generation with predefined configuration (txConfig).
        If txConfig is None raise exception.

        timeStart -- Time when node starts transmitting.
        timeDuration -- Time for which node is transmitting.
        """
        if self.txConfig is None:
            print "Cannot start signal generating, configuration is missing"
            return None

        # get a program object
        program = SignalGeneratorProgram(self.txConfig, timeStart, timeDuration)
        self.generatorNode.program(program)