Exemple #1
0
class Movie(object):
    def __init__(self, mov_path):
        self.mov_path = mov_path
        self.vr = VR(self.mov_path)
        self.frame_means = self.pull_frame_means()
    def pull_frame_means(self):
        means = []
        frame = self.vr.read()
        fi = 1
        while frame!=None:
            means.append(np.mean(frame))
            frame = self.vr.read()
            fi += 1
            print fi
            sys.stdout.flush()
            if fi>2000:
                break
        return np.array(means)
    def get_trials(self, iti_min_s=1., iti_max_s=10., darkness_thresh=60):
        #currently assumes first trial starts, without darkness, at time 0
        iti_min_fr = iti_min_s * self.vr.frame_rate
        iti_max_fr = iti_max_s * self.vr.frame_rate
        is_dark = self.frame_means < darkness_thresh
        is_flip = is_dark[:-1].astype(int)+is_dark[1:].astype(int)
        dark_edges = np.argwhere(is_flip==1) + 1
        itis = []
        added = False
        for e1,e2 in zip(dark_edges[:-1],dark_edges[1:]):
            if added:
                added = False
                continue
            if e2-e1 > iti_max_fr:
                continue
            if e2-e1 < iti_min_fr:
                continue
            itis.append([e1,e2])
            added = True
        itis = np.array(itis) 
        trials = np.array([np.append(0,itis[:,1]), np.append(itis[:,0],-1)]).T
        return trials
Exemple #2
0
class VideoDetector(Detector):
    def __init__(self):
        Detector.__init__(self)
        self.videoReader = VideoReader()
        self.detectedObjects = []

    def detect(self, frame):
        frame_path = "frame.png"
        cv2.imwrite(frame_path, frame)
        self.detectedObjects = Detector.detect(self, frame_path)
        os.remove(frame_path)
        return self.detectedObjects

    def start(self):
        print("start capture ...")
        while (True):
            # Read frame
            ret, frame = self.videoReader.read()

            # Detect objects in frame
            detect = threading.Thread(target=VideoDetector.detect,
                                      args=(self, frame))
            detect.start()

            # read and show frames without detecting while detection is being performed
            while detect.isAlive():
                ret, frame = self.videoReader.read()

                # Draw bounding boxes in frame
                Detector.draw_bboxes(self.detectedObjects, frame)

                # Show frame
                cv2.imshow('Detection', frame)

                if cv2.waitKey(1) & 0xFF == ord('q'):
                    # Close device
                    self.videoReader.release()
                    cv2.destroyAllWindows()
                    return
class NematodeTracker:
    def __init__(self, filename='videos/capture-0001.mp4'):
        self.filename = filename
        self.video_reader = VideoReader(filename)
        self.first_frame = self.video_reader.read()
        self.chosen_nematode_pos = []
        self.nematode_count = 0
        self.chosen_nematode_tot_distance = []
        self.colors = np.random.uniform(0, 255, (100, 3))
        self.threshold = 70

        self.max_display_resolution = (1280, 720)
        self.display_resize_ratio = min(
            self.max_display_resolution[0] / self.video_reader.width,
            self.max_display_resolution[1] / self.video_reader.height,
            1,
        )
        self.target_display_shape = (
            int(self.video_reader.width * self.display_resize_ratio),
            int(self.video_reader.height * self.display_resize_ratio),
        )

        self.min_area = 5  # relative area
        self.max_area = 20
        self.ppa = (self.video_reader.height *
                    self.video_reader.width) / 1253376
        self.elements_resize_ratio = np.sqrt(
            (self.video_reader.height * self.video_reader.width) / 1253376)

        self.data = []

    @staticmethod
    def on_mouse(event, x, y, _, param):
        choice, display_resize_ratio = param
        if event == 4:
            choice.append(
                (int(x / display_resize_ratio), int(y / display_resize_ratio)))
        elif event == 5:
            choice_idx = np.argmin(
                list(
                    map(
                        lambda p: (p[0][0] - p[1][0])**2 +
                        (p[0][1] - p[1][1])**2,
                        [(c, (int(x / display_resize_ratio),
                              int(y / display_resize_ratio)))
                         for c in choice])))
            choice.pop(choice_idx)

    @staticmethod
    def l2distance(param):
        pos1, pos2 = param
        return np.sqrt((pos1[0] - pos2[0])**2 + (pos1[1] - pos2[1])**2)

    @staticmethod
    def l2distance2(param):
        pos1, pos2 = param
        return (pos1[0] - pos2[0])**2 + (pos1[1] - pos2[1])**2

    @staticmethod
    def get_eccentricity(rect):
        d1 = rect[1][0]
        d2 = rect[1][1]
        dmax = max(d1, d2)
        dmin = min(d1, d2)
        return np.sqrt(dmax**2 - dmin**2) / dmax

    def find_nematode(self, frame):
        gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        ret, gray_frame = cv2.threshold(gray_frame, self.threshold, 255,
                                        cv2.THRESH_BINARY_INV)
        display_frame = frame.copy()
        centers = []
        eccentricities = []
        _, contours, _ = cv2.findContours(gray_frame, cv2.RETR_LIST,
                                          cv2.CHAIN_APPROX_SIMPLE)
        if contours:
            for idx, contour in enumerate(contours):
                if self.min_area * self.ppa < cv2.contourArea(
                        contour) < self.max_area * self.ppa:
                    cv2.drawContours(display_frame, contours, idx, (0, 0, 255),
                                     int(max(1, self.elements_resize_ratio)))
                    m = cv2.moments(contour)
                    cx = int(m['m10'] / m['m00'])
                    cy = int(m['m01'] / m['m00'])
                    cv2.circle(display_frame, (cx, cy), 2, (0, 255, 0), -1)
                    centers.append((cx, cy))
                    ellipse = cv2.fitEllipseDirect(contour)
                    display_frame = cv2.ellipse(display_frame, ellipse,
                                                (0, 255, 0), 2)
                    eccentricities.append(self.get_eccentricity(ellipse))

        return display_frame, centers, eccentricities

    def init_threshold(self):
        cv2.namedWindow('tracker')

        # Create Track bar
        frame = self.first_frame
        cv2.imshow('tracker', cv2.resize(frame, self.target_display_shape))
        cv2.createTrackbar('threshold', 'tracker', self.threshold, 255,
                           nothing)

        while True:
            self.threshold = cv2.getTrackbarPos('threshold', 'tracker')
            gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            ret, gray_frame = cv2.threshold(gray_frame, self.threshold, 255,
                                            cv2.THRESH_BINARY_INV)
            display_frame = frame.copy()

            _, contours, _ = cv2.findContours(gray_frame, cv2.RETR_LIST,
                                              cv2.CHAIN_APPROX_SIMPLE)
            if contours:
                cv2.drawContours(display_frame, contours, -1, (0, 0, 255),
                                 int(max(1, self.elements_resize_ratio)))

            display_frame = cv2.putText(display_frame,
                                        'Press Enter To Continue...', (50, 50),
                                        cv2.FONT_HERSHEY_SIMPLEX, 1,
                                        (255, 0, 0), 2)
            cv2.imshow(
                'tracker',
                cv2.resize(display_frame,
                           self.target_display_shape,
                           interpolation=cv2.INTER_AREA))
            k = cv2.waitKey(30) & 0xff
            if k in [27, 13, 32]:
                cv2.destroyAllWindows()
                break

    def choose_nematode(self):
        cv2.namedWindow('tracker')
        cv2.setMouseCallback(
            'tracker', self.on_mouse,
            (self.chosen_nematode_pos, self.display_resize_ratio))
        cv2.createTrackbar('minArea', 'tracker', self.min_area, 100, nothing)
        cv2.createTrackbar('maxArea', 'tracker', self.max_area, 100, nothing)
        frame = self.first_frame
        while True:
            self.min_area = max(5, cv2.getTrackbarPos('minArea', 'tracker')**2)
            self.max_area = max(5, cv2.getTrackbarPos('maxArea', 'tracker')**2)
            display_frame, centers, eccentricities = self.find_nematode(frame)
            if centers:
                for chosen_nematode_pos_idx in range(
                        len(self.chosen_nematode_pos)):
                    center_idx = int(
                        np.argmin(
                            list(
                                map(
                                    self.l2distance2,
                                    [(self.chosen_nematode_pos[
                                        chosen_nematode_pos_idx], center)
                                     for center in centers],
                                ))))
                    self.chosen_nematode_pos[
                        chosen_nematode_pos_idx] = centers[center_idx]
                    cv2.circle(
                        display_frame,
                        self.chosen_nematode_pos[chosen_nematode_pos_idx],
                        int(5 * self.elements_resize_ratio),
                        self.colors[chosen_nematode_pos_idx], -1)
                    cv2.putText(
                        display_frame,
                        str(chosen_nematode_pos_idx),
                        self.chosen_nematode_pos[chosen_nematode_pos_idx],
                        cv2.FONT_HERSHEY_SIMPLEX,
                        self.elements_resize_ratio,
                        self.colors[chosen_nematode_pos_idx],
                        int(2 * self.elements_resize_ratio),
                    )

            cv2.putText(display_frame, 'Press Enter To Start Tracking...',
                        (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
            cv2.imshow(
                'tracker',
                cv2.resize(display_frame,
                           self.target_display_shape,
                           interpolation=cv2.INTER_AREA))
            k = cv2.waitKey(30) & 0xff
            if k in [27, 13, 32]:
                self.chosen_nematode_tot_distance = np.zeros(
                    len(self.chosen_nematode_pos))
                cv2.destroyWindow('tracker')
                break

    def track_nematode(self):
        output_dir, name = os.path.split(self.filename)
        output_dir = os.path.join(output_dir, 'output')
        if not os.path.exists(output_dir):
            os.mkdir(output_dir)
        wri = cv2.VideoWriter(
            os.path.join(output_dir, name),
            cv2.VideoWriter_fourcc('F', 'M', 'P', '4'),
            self.video_reader.fps,
            self.video_reader.target_shape,
        )
        path_layer = np.zeros_like(self.first_frame)
        for i in range(1, self.video_reader.frame_count):
            text_layer = np.zeros_like(self.first_frame)
            display_frame, cur_centers, eccentricities = self.find_nematode(
                self.video_reader.read())

            data_point = []
            for chosen_nematode_pos_idx in range(len(
                    self.chosen_nematode_pos)):
                if not cur_centers:
                    distance = np.infty
                    cur_center_idx = -1
                else:
                    cur_center_idx = int(
                        np.argmin(
                            list(
                                map(
                                    self.l2distance2,
                                    [(self.chosen_nematode_pos[
                                        chosen_nematode_pos_idx], cur_center)
                                     for cur_center in cur_centers],
                                ))))
                    distance = self.l2distance((
                        self.chosen_nematode_pos[chosen_nematode_pos_idx],
                        cur_centers[cur_center_idx],
                    ))

                # display and record data according to whether the selected nematode is tracked correctly
                if distance < max(self.video_reader.width,
                                  self.video_reader.height) / 10:
                    self.chosen_nematode_pos[
                        chosen_nematode_pos_idx] = cur_centers[cur_center_idx]
                    cv2.circle(
                        path_layer,
                        self.chosen_nematode_pos[chosen_nematode_pos_idx], 2,
                        self.colors[chosen_nematode_pos_idx], -1)
                    cv2.circle(
                        display_frame,
                        self.chosen_nematode_pos[chosen_nematode_pos_idx],
                        int(5 * self.elements_resize_ratio),
                        self.colors[chosen_nematode_pos_idx], -1)
                    cv2.putText(
                        text_layer,
                        '%d %d %.2f' %
                        (chosen_nematode_pos_idx, self.
                         chosen_nematode_tot_distance[chosen_nematode_pos_idx],
                         eccentricities[cur_center_idx]),
                        self.chosen_nematode_pos[chosen_nematode_pos_idx],
                        cv2.FONT_HERSHEY_SIMPLEX,
                        self.elements_resize_ratio,
                        self.colors[chosen_nematode_pos_idx],
                        int(2 * self.elements_resize_ratio),
                    )
                else:
                    distance = 0
                    cv2.putText(
                        path_layer,
                        '?',
                        self.chosen_nematode_pos[chosen_nematode_pos_idx],
                        cv2.FONT_HERSHEY_SIMPLEX,
                        self.elements_resize_ratio,
                        self.colors[chosen_nematode_pos_idx],
                        int(2 * self.elements_resize_ratio),
                    )

                self.chosen_nematode_tot_distance[
                    chosen_nematode_pos_idx] += distance
                data_point.append((
                    self.chosen_nematode_pos[chosen_nematode_pos_idx][0],
                    self.chosen_nematode_pos[chosen_nematode_pos_idx][1],
                    distance,
                    self.chosen_nematode_tot_distance[chosen_nematode_pos_idx],
                    eccentricities[cur_center_idx],
                ))
            self.data.append(data_point)

            # combine information layer with the original video
            display_frame = cv2.bitwise_xor(display_frame, path_layer,
                                            display_frame)
            display_frame = cv2.bitwise_xor(display_frame, text_layer,
                                            display_frame)
            cv2.putText(
                display_frame,
                'Total nematode cnt: %d' % len(self.chosen_nematode_pos),
                (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)

            cv2.imshow('tracker',
                       cv2.resize(display_frame, self.target_display_shape))
            wri.write(display_frame)
            k = cv2.waitKey(1) & 0xff
            if k in [27, 13, 32]:
                break

        # save recorded data
        data = np.array(self.data)
        data = data.reshape((len(data), -1))
        columns = []
        for i in range(len(self.chosen_nematode_pos)):
            columns.append('n%dx' % i)
            columns.append('n%dy' % i)
            columns.append('n%dspeed' % i)
            columns.append('n%ddistance' % i)
            columns.append('n%deccentricity' % i)
        df = pd.DataFrame(data=data, columns=columns)
        df.to_csv(os.path.join(output_dir, name + '.csv'))
        wri.release()
        cv2.destroyAllWindows()
class NematodaMovementDetector:
    def __init__(
        self,
        filename=r'D:\Projects\model_organism_helper\Nematoda\capture-0001.avi',
        resize_ratio=1.0,
        frame_step=1,
        movement_threshold=4,
        max_nematoda_count=100,
        kernel_size=None,
        display_scale=1.0,
    ):
        self.frame_step = frame_step
        self.resize_ratio = resize_ratio
        self.video_reader = VideoReader(filename, resize_ratio, frame_step)
        self.background_subtractor = None
        self.movement_threshold = movement_threshold
        self.kernel_size = kernel_size
        if self.kernel_size is None:
            self.kernel_size = int(min(self.video_reader.target_shape) / 32)
            self.kernel_size = int(2 * (int((self.kernel_size - 1) / 2))) + 1

        self.max_nematoda_count = max_nematoda_count
        self.initialize_background_subtractor()
        display_scale = min(display_scale,
                            400 / np.min(self.video_reader.target_shape))
        self.display_size_target = (
            int(self.video_reader.target_shape[0] * display_scale),
            int(self.video_reader.target_shape[1] * display_scale),
        )

    def initialize_background_subtractor(self):
        self.background_subtractor = cv2.createBackgroundSubtractorMOG2(
            history=10)
        for i in range(20):
            frame = self.video_reader.read()
            self.background_subtractor.apply(frame)
            # print('.', end='', flush=True)

    def get_contours(self, frame):
        foreground = cv2.absdiff(
            self.background_subtractor.getBackgroundImage(), frame)
        foreground = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY)
        foreground = cv2.GaussianBlur(foreground,
                                      (self.kernel_size, self.kernel_size), 0)
        _, mask = cv2.threshold(foreground, self.movement_threshold, 255,
                                cv2.THRESH_BINARY)
        _, contours, _ = cv2.findContours(mask, cv2.RETR_LIST,
                                          cv2.CHAIN_APPROX_SIMPLE)
        return contours

    def config(self):
        print('Initializing...')
        frame = self.video_reader.read()
        cv2.namedWindow('video', cv2.WINDOW_AUTOSIZE)
        frame_d = cv2.resize(frame, self.display_size_target)
        labeled_frame_d = cv2.resize(frame, self.display_size_target)
        cv2.imshow('video', np.hstack([frame_d, labeled_frame_d]))
        cv2.createTrackbar('threshold', 'video', self.movement_threshold, 63,
                           nothing)
        cv2.createTrackbar('kernelSize', 'video', self.kernel_size,
                           self.kernel_size * 3, nothing)
        cv2.createTrackbar('frameStep', 'video', self.frame_step,
                           int(self.video_reader.frame_count / 20 - 1),
                           nothing)
        cv2.setTrackbarMin('frameStep', 'video', 1)
        reset_frame_step_countdown = -1
        while True:
            contours = self.get_contours(frame)
            labeled_frame = frame.copy()
            cv2.drawContours(labeled_frame, contours, -1, utils.COLOR['red'],
                             2, cv2.LINE_AA)
            frame_d = cv2.resize(frame, self.display_size_target)
            labeled_frame_d = cv2.resize(labeled_frame,
                                         self.display_size_target)
            cv2.imshow('video', np.hstack([frame_d, labeled_frame_d]))

            self.movement_threshold = cv2.getTrackbarPos('threshold', 'video')
            self.kernel_size = cv2.getTrackbarPos('kernelSize', 'video')
            self.kernel_size = int(2 * (int((self.kernel_size - 1) / 2))) + 1
            if self.frame_step != cv2.getTrackbarPos('frameStep', 'video'):
                self.frame_step = cv2.getTrackbarPos('frameStep', 'video')
                reset_frame_step_countdown = 20

            if reset_frame_step_countdown > 0:
                reset_frame_step_countdown -= 1
            if reset_frame_step_countdown == 0:
                self.video_reader.reset(frame_step=self.frame_step)
                self.initialize_background_subtractor()
                frame = self.video_reader.read()
                reset_frame_step_countdown = -1

            k = cv2.waitKey(30) & 0xff

            if k in [13, 32]:
                break
            elif k == 27:
                cv2.destroyAllWindows()
                exit()
        cv2.destroyAllWindows()
        self.video_reader.reset()
        print('Done')

    def process(self, online=False, output_filename=None):
        # initialize VideoWriter
        wri = None
        if output_filename is not None:
            wri = cv2.VideoWriter(
                output_filename,
                cv2.VideoWriter_fourcc('F', 'M', 'P', '4'),
                self.video_reader.fps,
                self.video_reader.target_shape,
            )

        _time = cv2.getTickCount()
        frame_count = np.zeros((self.max_nematoda_count, ))

        frame = self.video_reader.read()
        frame_idx = 0
        while frame is not None:
            self.background_subtractor.apply(frame)
            contours = self.get_contours(frame)

            if contours:
                if len(contours) < self.max_nematoda_count:
                    frame_count[len(contours)] += 1

            if online or wri is not None:
                labeled_frame = frame.copy()
                cv2.putText(labeled_frame, '%d' % (len(contours), ), (50, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, utils.COLOR['yellow'],
                            6)
                if contours:
                    cv2.drawContours(labeled_frame, contours, -1,
                                     utils.COLOR['red'], 2, cv2.LINE_AA)
                if wri is not None:
                    wri.write(labeled_frame)
                if online:
                    frame = cv2.resize(frame, self.display_size_target)
                    labeled_frame = cv2.resize(labeled_frame,
                                               self.display_size_target)
                    cv2.imshow('video', np.hstack([frame, labeled_frame]))
                    k = cv2.waitKey(1) & 0xff
                    if k == 27:
                        break

            frame = self.video_reader.read()
            frame_idx += 1

            # progress report
            if frame_idx % 50 == 0:
                print('%.2f' %
                      (frame_idx * 100.0 / self.video_reader.frame_count) +
                      '%',
                      end=' ')
                time = cv2.getTickCount()
                print(50 / (time - _time) * cv2.getTickFrequency(), 'fps')
                _time = time

        if wri is not None:
            wri.release()
        if online:
            cv2.destroyAllWindows()
            print(frame_count)
            print('prediction:', np.argmax(frame_count))
        return frame_count