Exemple #1
0

if __name__ == '__main__':
    # parsing
    parser = make_parser()
    parsed_args = parser.parse_args()

    # experiment config
    exp_cfg_path = osp.realpath(parsed_args.config)
    root_cfg.merge_from_file(exp_cfg_path)
    logger.info("Load experiment configuration at: %s" % exp_cfg_path)

    # resolve config
    root_cfg = complete_path_wt_root_in_cfg(root_cfg, ROOT_PATH)
    root_cfg = root_cfg.test
    task, task_cfg_origin = specify_task(root_cfg)

    # hpo config
    with open(parsed_args.hpo_config, "r") as f:
        hpo_cfg = yaml.safe_load(f)
    hpo_cfg = hpo_cfg["test"][task]
    hpo_schedules = hpo.parse_hp_path_and_range(hpo_cfg)

    csv_file = osp.join(hpo_cfg["exp_save"],
                        "hpo_{}.csv".format(task_cfg_origin["exp_name"]))

    while True:
        task_cfg = deepcopy(task_cfg_origin)
        hpo_exp_dict = hpo.sample_and_update_hps(task_cfg, hpo_schedules)
        if task == "track":
            testers = build_siamfcpp_tester(task_cfg)
Exemple #2
0
        exit(0)


if __name__ == '__main__':
    # parsing
    parser = make_parser()
    parsed_args = parser.parse_args()
    # experiment config
    exp_cfg_path = osp.realpath(parsed_args.config)
    root_cfg.merge_from_file(exp_cfg_path)
    logger.info("Load experiment configuration at: %s" % exp_cfg_path)
    logger.info(
        "Merged with root_cfg imported from videoanalyst.config.config.cfg")
    # resolve config
    root_cfg = root_cfg.train
    task, task_cfg = specify_task(root_cfg)
    task_cfg.data.num_workers = 2
    task_cfg.data.sampler.submodules.dataset.GOT10kDataset.check_integrity = False
    task_cfg.freeze()

    if parsed_args.target == "dataloader":
        logger.info("visualize for dataloader")
        with Timer(name="Dataloader building", verbose=True):
            dataloader = dataloader_builder.build(task, task_cfg.data)

        for batch_training_data in dataloader:
            keys = list(batch_training_data.keys())
            batch_size = len(batch_training_data[keys[0]])
            training_samples = [{
                k: v[[idx]]
                for k, v in batch_training_data.items()
                        default="cpu",
                        type=str,
                        help='torch.device')
    return parser


parser = make_parser()
parsed_args = parser.parse_args()

exp_cfg_path = parsed_args.config
root_cfg.merge_from_file(exp_cfg_path)
logger.info("Load experiment configuration at: %s" % exp_cfg_path)

# resolve config
test_cfg = root_cfg.test
task, task_cfg = specify_task(test_cfg)
task_cfg.freeze()
# build model
model = model_builder.build(task, task_cfg.model)
# build pipeline
pipeline = pipeline_builder.build(task, task_cfg.pipeline, model)
# build dataset
datasets = dataset_buidler.build(
    task, root_cfg.train.track.data.sampler.submodules.dataset)
dataset = datasets[0]

dev = torch.device(parsed_args.device)
pipeline.set_device(dev)

if __name__ == "__main__":
Exemple #4
0
if __name__ == '__main__':
    # parsing
    parser = make_parser()
    parsed_args = parser.parse_args()

    # experiment config
    exp_cfg_path = osp.realpath(parsed_args.config)
    # from IPython import embed;embed()
    root_cfg.merge_from_file(exp_cfg_path)
    logger.info("Load experiment configuration at: %s" % exp_cfg_path)

    # resolve config
    root_cfg = complete_path_wt_root_in_cfg(root_cfg, ROOT_PATH)
    root_cfg = root_cfg.test
    task, task_cfg_origin = specify_task(root_cfg)

    # hpo config
    with open(parsed_args.hpo_config, "r") as f:
        hpo_cfg = yaml.safe_load(f)
    hpo_cfg = hpo_cfg["test"]
    _, hpo_cfg = specify_task(hpo_cfg)
    hpo_schedules = hpo.parse_hp_path_and_range(hpo_cfg)

    # results = [hpo.sample_and_update_hps(task_cfg, hpo_schedules) for _ in range(5)]
    # merged_result = hpo.merge_result_dict(results)

    csv_file = osp.join(hpo_cfg["exp_save"],
                        "hpo_{}.csv".format(task_cfg_origin["exp_name"]))

    # from IPython import embed;embed();exit(0)
Exemple #5
0
def main(args):
    root_cfg = cfg
    root_cfg.merge_from_file(args.config)
    logger.info("Load experiment configuration at: %s" % args.config)

    # resolve config
    root_cfg = complete_path_wt_root_in_cfg(root_cfg, ROOT_PATH)
    root_cfg = root_cfg.test
    task, task_cfg = specify_task(root_cfg)
    task_cfg.freeze()
    window_name = task_cfg.exp_name
    # build model
    model = model_builder.build(task, task_cfg.model)
    # build pipeline
    pipeline = pipeline_builder.build(task, task_cfg.pipeline, model)
    dev = torch.device(args.device)
    pipeline.to_device(dev)
    init_box = None
    template = None
    vw = None

    if args.video == "webcam":
        logger.info("[INFO] starting video stream...")
        vs = cv2.VideoCapture(0)
        vs.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
    else:
        vs = cv2.VideoCapture(args.video)
    if args.output:
        fourcc = cv2.VideoWriter_fourcc(*'MJPG')
        width, height = vs.get(3), vs.get(4)
        vw = cv2.VideoWriter(args.output, fourcc, 25,
                             (int(width), int(height)))
    while vs.isOpened():
        ret, frame = vs.read()
        if ret:
            if init_box is not None:
                time_a = time.time()
                rect_pred = pipeline.update(frame)
                show_frame = frame.copy()
                time_cost = time.time() - time_a
                bbox_pred = xywh2xyxy(rect_pred)
                bbox_pred = tuple(map(int, bbox_pred))
                cv2.putText(show_frame,
                            "track cost: {:.4f} s".format(time_cost),
                            (128, 20), cv2.FONT_HERSHEY_COMPLEX, font_size,
                            (0, 0, 255), font_width)
                cv2.rectangle(show_frame, bbox_pred[:2], bbox_pred[2:],
                              (0, 255, 0))
                if template is not None:
                    show_frame[:128, :128] = template
            else:
                show_frame = frame
            cv2.imshow(window_name, show_frame)
            if vw is not None:
                vw.write(show_frame)
        key = cv2.waitKey(30) & 0xFF
        if key == ord("q"):
            break
        # if the 's' key is selected, we are going to "select" a bounding
        # box to track
        elif key == ord("s"):
            # select the bounding box of the object we want to track (make
            # sure you press ENTER or SPACE after selecting the ROI)
            box = cv2.selectROI(window_name,
                                frame,
                                fromCenter=False,
                                showCrosshair=True)
            if box[2] > 0 and box[3] > 0:
                init_box = box
                template = cv2.resize(
                    frame[box[1]:box[1] + box[3], box[0]:box[0] + box[2]],
                    (128, 128))
                pipeline.init(frame, init_box)
        elif key == ord("c"):
            init_box = None
            template = None
    vs.release()
    if vw is not None:
        vw.release()
    cv2.destroyAllWindows()
Exemple #6
0
def main(args):
    root_cfg = cfg
    root_cfg.merge_from_file(args.config)
    logger.info("Load experiment configuration at: %s" % args.config)

    # resolve config
    root_cfg = complete_path_wt_root_in_cfg(root_cfg, ROOT_PATH)
    root_cfg = root_cfg.test
    task, task_cfg = specify_task(root_cfg)
    task_cfg.freeze()
    window_name = task_cfg.exp_name
    # build model
    model = model_builder.build(task, task_cfg.model)
    # build pipeline
    pipeline = pipeline_builder.build(task, task_cfg.pipeline, model)
    dev = torch.device(args.device)
    pipeline.set_device(dev)
    init_box = None
    template = None
    if len(args.init_bbox) == 4:
        init_box = args.init_bbox

    video_name = "untitled"
    vw = None
    resize_ratio = args.resize
    dump_only = args.dump_only

    # create video stream
    # from webcam
    if args.video == "webcam":
        logger.info("Starting video stream...")
        vs = cv2.VideoCapture(0)
        vs.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
        formated_time_str = time.strftime(r"%Y%m%d-%H%M%S", time.localtime())
        video_name = "webcam-{}".format(formated_time_str)
    # from image files
    elif not osp.isfile(args.video):
        logger.info("Starting from video frame image files...")
        vs = ImageFileVideoStream(args.video, init_counter=args.start_index)
        video_name = osp.basename(osp.dirname(args.video))
    # from video file
    else:
        logger.info("Starting from video file...")
        vs = cv2.VideoCapture(args.video)
        video_name = osp.splitext(osp.basename(args.video))[0]

    # create video writer to output video
    if args.output:
        # save as image files
        if not str(args.output).endswith(r".mp4"):
            vw = ImageFileVideoWriter(osp.join(args.output, video_name))
        # save as a single video file
        else:
            vw = VideoWriter(args.output, fps=20)

    # loop over sequence
    frame_idx = 0  # global frame index
    while vs.isOpened():
        key = 255
        ret, frame = vs.read()
        if ret:
            logger.debug("frame: {}".format(frame_idx))
            if template is not None:
                time_a = time.time()
                rect_pred = pipeline.update(frame)
                logger.debug(rect_pred)
                show_frame = frame.copy()
                time_cost = time.time() - time_a
                bbox_pred = xywh2xyxy(rect_pred)
                bbox_pred = tuple(map(int, bbox_pred))
                cv2.putText(show_frame,
                            "track cost: {:.4f} s".format(time_cost), (128, 20),
                            cv2.FONT_HERSHEY_COMPLEX, font_size, (0, 0, 255),
                            font_width)
                cv2.rectangle(show_frame, bbox_pred[:2], bbox_pred[2:],
                              (0, 255, 0))
                if template is not None:
                    show_frame[:128, :128] = template
            else:
                show_frame = frame
            show_frame = cv2.resize(
                show_frame, (int(show_frame.shape[1] * resize_ratio),
                             int(show_frame.shape[0] * resize_ratio)))  # resize
            if not dump_only:
                cv2.imshow(window_name, show_frame)
            if vw is not None:
                vw.write(show_frame)
        else:
            break
        # catch key if
        if (init_box is None) or (vw is None):
            logger.debug("Press key s to select object.")
            if (frame_idx == 0):
                wait_time = 5000
            else:
                wait_time = 30
            key = cv2.waitKey(wait_time) & 0xFF
        logger.debug("key: {}".format(key))
        if key == ord("q"):
            break
        # if the 's' key is selected, we are going to "select" a bounding
        # box to track
        elif key == ord("s"):
            # select the bounding box of the object we want to track (make
            # sure you press ENTER or SPACE after selecting the ROI)
            logger.debug("Select object to track")
            box = cv2.selectROI(window_name,
                                frame,
                                fromCenter=False,
                                showCrosshair=True)
            if box[2] > 0 and box[3] > 0:
                init_box = box
        elif key == ord("c"):
            logger.debug(
                "init_box/template released, press key s again to select object."
            )
            init_box = None
            template = None
        if (init_box is not None) and (template is None):
            template = cv2.resize(
                frame[int(init_box[1]):int(init_box[1] + init_box[3]),
                      int(init_box[0]):int(init_box[0] + init_box[2])],
                (128, 128))
            pipeline.init(frame, init_box)
            logger.debug("pipeline initialized with bbox : {}".format(init_box))
        frame_idx += 1

    vs.release()
    if vw is not None:
        vw.release()
    cv2.destroyAllWindows()
Exemple #7
0
def main(args):
    global polygon_points, lbt_flag, rbt_flag
    root_cfg = cfg
    root_cfg.merge_from_file(args.config)
    logger.info("Load experiment configuration at: %s" % args.config)

    # resolve config
    root_cfg = root_cfg.test
    task, task_cfg = specify_task(root_cfg)
    task_cfg.freeze()
    window_name = task_cfg.exp_name
    cv2.namedWindow(window_name)
    cv2.setMouseCallback(window_name, draw_polygon)
    # build model
    tracker_model = model_builder.build("track", task_cfg.tracker_model)
    tracker = pipeline_builder.build("track",
                                     task_cfg.tracker_pipeline,
                                     model=tracker_model)
    segmenter = model_builder.build('vos', task_cfg.segmenter)
    # build pipeline
    pipeline = pipeline_builder.build('vos',
                                      task_cfg.pipeline,
                                      segmenter=segmenter,
                                      tracker=tracker)
    dev = torch.device(args.device)
    pipeline.set_device(dev)
    init_mask = None
    init_box = None
    template = None

    video_name = "untitled"
    vw = None
    resize_ratio = args.resize
    dump_only = args.dump_only

    # create video stream
    # from webcam
    if args.video == "webcam":
        logger.info("Starting video stream...")
        vs = cv2.VideoCapture(0)
        vs.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
        formated_time_str = time.strftime(r"%Y%m%d-%H%M%S", time.localtime())
        video_name = "webcam-{}".format(formated_time_str)
    # from image files
    elif not osp.isfile(args.video):
        logger.info("Starting from video frame image files...")
        vs = ImageFileVideoStream(args.video, init_counter=args.start_index)
        video_name = osp.basename(osp.dirname(args.video))
    # from video file
    else:
        logger.info("Starting from video file...")
        vs = cv2.VideoCapture(args.video)
        video_name = osp.splitext(osp.basename(args.video))[0]

    # create video writer to output video
    if args.output:
        # save as image files
        if not str(args.output).endswith(r".mp4"):
            vw = ImageFileVideoWriter(osp.join(args.output, video_name))
        # save as a single video file
        else:
            vw = VideoWriter(args.output, fps=20)

    # loop over sequence
    frame_idx = 0  # global frame index
    while vs.isOpened():
        key = 255
        ret, frame = vs.read()
        if ret:
            if template is not None:
                time_a = time.time()
                score_map = pipeline.update(frame)
                mask = (score_map > 0.5).astype(np.uint8) * 2
                color_mask = mask_colorize(mask, 10, color_map)
                color_mask = cv2.resize(color_mask,
                                        (frame.shape[1], frame.shape[0]),
                                        interpolation=cv2.INTER_NEAREST)
                show_frame = cv2.addWeighted(frame, 0.6, color_mask, 0.4, 0)
                time_cost = time.time() - time_a
                cv2.putText(show_frame,
                            "track cost: {:.4f} s".format(time_cost),
                            (128, 20), cv2.FONT_HERSHEY_COMPLEX, font_size,
                            (0, 0, 255), font_width)
                if template is not None:
                    show_frame[:128, :128] = template
            else:
                show_frame = frame
            show_frame = cv2.resize(
                show_frame,
                (int(show_frame.shape[1] * resize_ratio),
                 int(show_frame.shape[0] * resize_ratio)))  # resize
            if not dump_only:
                cv2.imshow(window_name, show_frame)
            if vw is not None:
                vw.write(show_frame)
        else:
            break
        # catch key if
        if (init_mask is None) or (vw is None):
            if (frame_idx == 0):
                wait_time = 5000
            else:
                wait_time = 30
            key = cv2.waitKey(wait_time) & 0xFF
        if key == ord("q"):
            break
        # if the 's' key is selected, we are going to "select" a bounding
        # box to track
        elif key == ord("s"):
            # select the bounding box of the object we want to track (make
            # sure you press ENTER or SPACE after selecting the ROI)
            logger.debug(
                "Select points object to track, left click for new pt, right click to finish"
            )
            polygon_points = []
            while not rbt_flag:
                if lbt_flag:
                    print(polygon_points[-1])
                    cv2.circle(show_frame, polygon_points[-1], 5, (0, 0, 255),
                               2)
                    if len(polygon_points) > 1:
                        cv2.line(show_frame, polygon_points[-2],
                                 polygon_points[-1], (255, 0, 0), 2)
                    lbt_flag = False
                cv2.imshow(window_name, show_frame)
                key = cv2.waitKey(10) & 0xFF
            if len(polygon_points) > 2:
                np_pts = np.array(polygon_points)
                init_box = cv2.boundingRect(np_pts)
                zero_mask = np.zeros(
                    (show_frame.shape[0], show_frame.shape[1]), dtype=np.uint8)
                init_mask = cv2.fillPoly(zero_mask, [np_pts], (1, ))
            rbt_flag = False
        elif key == ord("c"):
            logger.debug(
                "init_box/template released, press key s again to select object."
            )
            init_mask = None
            init_box = None
            template = None
        if (init_mask is not None) and (template is None):
            template = cv2.resize(
                frame[int(init_box[1]):int(init_box[1] + init_box[3]),
                      int(init_box[0]):int(init_box[0] + init_box[2])],
                (128, 128))
            pipeline.init(frame, init_box, init_mask)
            logger.debug(
                "pipeline initialized with bbox : {}".format(init_box))
        frame_idx += 1

    vs.release()
    if vw is not None:
        vw.release()
    cv2.destroyAllWindows()