def get_trilinear_field(): xl, xh, nx = -1.0, 1.0, 41 yl, yh, ny = -1.5, 1.5, 41 zl, zh, nz = -2.0, 2.0, 41 x = np.linspace(xl, xh, nx) y = np.linspace(yl, yh, ny) z = np.linspace(zl, zh, nz) crds = coordinate.wrap_crds("nonuniform_cartesian", [('x', x), ('y', y), ('z', z)]) b = field.empty(crds, name="f", nr_comps=3, center="Cell", layout="interlaced") X, Y, Z = b.get_crds(shaped=True) x01, y01, z01 = 0.5, 0.5, 0.5 x02, y02, z02 = 0.5, 0.5, 0.5 x03, y03, z03 = 0.5, 0.5, 0.5 b['x'][:] = 0.0 + 1.0 * (X - x01) + 1.0 * (Y - y01) + 1.0 * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) + 1.0 * (Y - y01) * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) * (Z - z01) b['y'][:] = 0.0 + 1.0 * (X - x02) - 1.0 * (Y - y02) + 1.0 * (Z - z02) + \ 1.0 * (X - x02) * (Y - y02) + 1.0 * (Y - y02) * (Z - z02) - \ 1.0 * (X - x02) * (Y - y02) * (Z - z02) b['z'][:] = 0.0 + 1.0 * (X - x03) + 1.0 * (Y - y03) - 1.0 * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) + 1.0 * (Y - y03) * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) * (Z - z03) return b
def make_dipole(m=(0, 0, -DEFAULT_STRENGTH), strength=None, l=None, h=None, n=None, center='cell', dtype='f8', twod=False, nonuniform=False, crd_system='gse', name='b'): """Generate a dipole field with magnetic moment m [x, y, z]""" if l is None: l = [-5] * 3 if h is None: h = [5] * 3 if n is None: n = [256] * 3 if center.strip().lower() == 'cell': n = [ni + 1 for ni in n] x = np.array(np.linspace(l[0], h[0], n[0]), dtype=dtype) y = np.array(np.linspace(l[1], h[1], n[1]), dtype=dtype) z = np.array(np.linspace(l[2], h[2], n[2]), dtype=dtype) if twod: y = np.array(np.linspace(-0.1, 0.1, 2), dtype=dtype) if nonuniform: z += 0.01 * ((h[2] - l[2]) / n[2]) * np.sin(np.linspace(0, np.pi, n[2])) B = field.empty([x, y, z], nr_comps=3, name=name, center=center, layout='interlaced', dtype=dtype) B.set_info('crd_system', viscid.as_crd_system(crd_system)) B.set_info('cotr', viscid.dipole_moment2cotr(m, crd_system=crd_system)) return fill_dipole(B, m=m, strength=strength)
def get_dipole(m=None, l=None, h=None, n=None, twod=False): dtype = 'float64' if l is None: l = [-5] * 3 if h is None: h = [5] * 3 if n is None: n = [256] * 3 x = np.array(np.linspace(l[0], h[0], n[0]), dtype=dtype) y = np.array(np.linspace(l[1], h[1], n[1]), dtype=dtype) z = np.array(np.linspace(l[2], h[2], n[2]), dtype=dtype) if twod: y = np.array(np.linspace(-0.1, 0.1, 2), dtype=dtype) B = field.empty([x, y, z], nr_comps=3, name="B", center='cell', layout='interlaced', dtype=dtype) Xcc, Ycc, Zcc = B.get_crds_cc(shaped=True) #pylint: disable=W0612 one = np.array([1.0], dtype=dtype) #pylint: disable=W0612 three = np.array([3.0], dtype=dtype) #pylint: disable=W0612 if m is None: m = [0.0, 0.0, -1.0] m = np.array(m, dtype=dtype) mx, my, mz = m #pylint: disable=W0612 if _HAS_NUMEXPR: rsq = ne.evaluate("Xcc**2 + Ycc**2 + Zcc**2") #pylint: disable=W0612 mdotr = ne.evaluate("mx * Xcc + my * Ycc + mz * Zcc") #pylint: disable=W0612 B['x'] = ne.evaluate("((three * Xcc * mdotr / rsq) - mx) / rsq**1.5") B['y'] = ne.evaluate("((three * Ycc * mdotr / rsq) - my) / rsq**1.5") B['z'] = ne.evaluate("((three * Zcc * mdotr / rsq) - mz) / rsq**1.5") else: rsq = Xcc**2 + Ycc**2 + Zcc**2 mdotr = mx * Xcc + my * Ycc + mz * Zcc B['x'] = ((three * Xcc * mdotr / rsq) - mx) / rsq**1.5 B['y'] = ((three * Ycc * mdotr / rsq) - my) / rsq**1.5 B['z'] = ((three * Zcc * mdotr / rsq) - mz) / rsq**1.5 return B
def main(): xl, xh, nx = -1.0, 1.0, 41 yl, yh, ny = -1.5, 1.5, 41 zl, zh, nz = -2.0, 2.0, 41 x = np.linspace(xl, xh, nx) y = np.linspace(yl, yh, ny) z = np.linspace(zl, zh, nz) crds = coordinate.wrap_crds("nonuniform_cartesian", [('z', z), ('y', y), ('x', x)]) bx = field.empty(crds, name="$B_x$", center="Node") by = field.empty(crds, name="$B_y$", center="Node") bz = field.empty(crds, name="$B_z$", center="Node") fld = field.empty(crds, name="B", nr_comps=3, center="Node", layout="interlaced") X, Y, Z = crds.get_crds(shaped=True) x01, y01, z01 = 0.5, 0.5, 0.5 x02, y02, z02 = 0.5, 0.5, 0.5 x03, y03, z03 = 0.5, 0.5, 0.5 bx[:] = 0.0 + 1.0 * (X - x01) + 1.0 * (Y - y01) + 1.0 * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) + 1.0 * (Y - y01) * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) * (Z - z01) by[:] = 0.0 + 1.0 * (X - x02) - 1.0 * (Y - y02) + 1.0 * (Z - z02) + \ 1.0 * (X - x02) * (Y - y02) + 1.0 * (Y - y02) * (Z - z02) - \ 1.0 * (X - x02) * (Y - y02) * (Z - z02) bz[:] = 0.0 + 1.0 * (X - x03) + 1.0 * (Y - y03) - 1.0 * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) + 1.0 * (Y - y03) * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) * (Z - z03) fld[..., 0] = bx fld[..., 1] = by fld[..., 2] = bz fig = mlab.figure(size=(1150, 850), bgcolor=(1.0, 1.0, 1.0), fgcolor=(0.0, 0.0, 0.0)) f1_src = vlab.add_field(bx) f2_src = vlab.add_field(by) f3_src = vlab.add_field(bz) mlab.pipeline.iso_surface(f1_src, contours=[0.0], opacity=1.0, color=(1.0, 0.0, 0.0)) mlab.pipeline.iso_surface(f2_src, contours=[0.0], opacity=1.0, color=(0.0, 1.0, 0.0)) mlab.pipeline.iso_surface(f3_src, contours=[0.0], opacity=1.0, color=(0.0, 0.0, 1.0)) mlab.axes() mlab.show() nullpt = cycalc.interp_trilin(fld, [(0.5, 0.5, 0.5)]) print("f(0.5, 0.5, 0.5):", nullpt) _, axes = plt.subplots(4, 3, sharex=True, sharey=True) all_roots = [] positive_roots = [] ix = iy = iz = 0 for di, d in enumerate([0, -1]): #### XY face a1 = bx[iz + d, iy, ix] b1 = bx[iz + d, iy, ix - 1] - a1 c1 = bx[iz + d, iy - 1, ix] - a1 d1 = bx[iz + d, iy - 1, ix - 1] - c1 - b1 - a1 a2 = by[iz + d, iy, ix] b2 = by[iz + d, iy, ix - 1] - a2 c2 = by[iz + d, iy - 1, ix] - a2 d2 = by[iz + d, iy - 1, ix - 1] - c2 - b2 - a2 a3 = bz[iz + d, iy, ix] b3 = bz[iz + d, iy, ix - 1] - a3 c3 = bz[iz + d, iy - 1, ix] - a3 d3 = bz[iz + d, iy - 1, ix - 1] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((rt1, rt2, d)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((rt1, rt2, d)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (xh - xl) * roots1 + xl roots2 = (yh - yl) * roots2 + yl xp = np.linspace(0.0, 1.0, nx) vlt.plot(fld['x'], "z={0}i".format(d), ax=axes[0 + 2 * di, 0], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, yl, yh)) y1 = - (a1 + b1 * xp) / (c1 + d1 * xp) plt.plot(x, (yh - yl) * y1 + yl, 'k') for i, xrt, yrt in zip(count(), roots1, roots2): plt.plot(xrt, yrt, markers[i]) vlt.plot(fld['y'], "z={0}i".format(d), ax=axes[1 + 2 * di, 0], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, yl, yh)) y2 = - (a2 + b2 * xp) / (c2 + d2 * xp) plt.plot(x, (yh - yl) * y2 + yl, 'k') for xrt, yrt in zip(roots1, roots2): plt.plot(xrt, yrt, markers[i]) #### YZ face a1 = bx[iz, iy, ix + d] b1 = bx[iz, iy - 1, ix + d] - a1 c1 = bx[iz - 1, iy, ix + d] - a1 d1 = bx[iz - 1, iy - 1, ix + d] - c1 - b1 - a1 a2 = by[iz, iy, ix + d] b2 = by[iz, iy - 1, ix + d] - a2 c2 = by[iz - 1, iy, ix + d] - a2 d2 = by[iz - 1, iy - 1, ix + d] - c2 - b2 - a2 a3 = bz[iz, iy, ix + d] b3 = bz[iz, iy - 1, ix + d] - a3 c3 = bz[iz - 1, iy, ix + d] - a3 d3 = bz[iz - 1, iy - 1, ix + d] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((d, rt1, rt2)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((d, rt1, rt2)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (yh - yl) * roots1 + yl roots2 = (zh - zl) * roots2 + zl yp = np.linspace(0.0, 1.0, ny) # plt.subplot(121) vlt.plot(fld['x'], "x={0}i".format(d), ax=axes[0 + 2 * di, 1], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(yl, yh, zl, zh)) z1 = - (a1 + b1 * yp) / (c1 + d1 * yp) plt.plot(y, (zh - zl) * z1 + zl, 'k') for i, yrt, zrt in zip(count(), roots1, roots2): plt.plot(yrt, zrt, markers[i]) # plt.subplot(122) vlt.plot(fld['y'], "x={0}i".format(d), ax=axes[1 + 2 * di, 1], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(yl, yh, zl, zh)) z1 = - (a2 + b2 * yp) / (c2 + d2 * yp) plt.plot(y, (zh - zl) * z1 + zl, 'k') for i, yrt, zrt in zip(count(), roots1, roots2): plt.plot(yrt, zrt, markers[i]) #### ZX face a1 = bx[iz, iy + d, ix] b1 = bx[iz - 1, iy + d, ix] - a1 c1 = bx[iz, iy + d, ix - 1] - a1 d1 = bx[iz - 1, iy + d, ix - 1] - c1 - b1 - a1 a2 = by[iz, iy + d, ix] b2 = by[iz - 1, iy + d, ix] - a2 c2 = by[iz, iy + d, ix - 1] - a2 d2 = by[iz - 1, iy + d, ix - 1] - c2 - b2 - a2 a3 = bz[iz, iy + d, ix] b3 = bz[iz - 1, iy + d, ix] - a3 c3 = bz[iz, iy + d, ix - 1] - a3 d3 = bz[iz - 1, iy + d, ix - 1] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((rt2, d, rt1)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((rt2, d, rt1)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (zh - zl) * roots1 + zl roots2 = (xh - xl) * roots2 + xl zp = np.linspace(0.0, 1.0, nz) # plt.subplot(121) vlt.plot(fld['x'], "y={0}i".format(d), ax=axes[0 + 2 * di, 2], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, zl, zh)) x1 = - (a1 + b1 * zp) / (c1 + d1 * zp) plt.plot(z, (xh - xl) * x1 + xl, 'k') for i, zrt, xrt in zip(count(), roots1, roots2): plt.plot(xrt, zrt, markers[i]) # plt.subplot(121) vlt.plot(fld['y'], "y={0}i".format(d), ax=axes[1 + 2 * di, 2], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, zl, zh)) x1 = - (a2 + b2 * zp) / (c2 + d2 * zp) plt.plot(z, (xh - xl) * x1 + xl, 'k') for i, zrt, xrt in zip(count(), roots1, roots2): plt.plot(xrt, zrt, markers[i]) print("all:", len(all_roots), "positive:", len(positive_roots)) if len(all_roots) % 2 == 1: print("something is fishy, there are an odd number of root points " "on the surface of your cube, there is probably a degenerate " "line or surface of nulls") print("Null Point?", (len(positive_roots) % 2 == 1)) plt.show()
def main(): xl, xh, nx = -1.0, 1.0, 41 yl, yh, ny = -1.5, 1.5, 41 zl, zh, nz = -2.0, 2.0, 41 x = np.linspace(xl, xh, nx) y = np.linspace(yl, yh, ny) z = np.linspace(zl, zh, nz) crds = coordinate.wrap_crds("nonuniform_cartesian", [('z', z), ('y', y), ('x', x)]) bx = field.empty(crds, name="$B_x$", center="Node") by = field.empty(crds, name="$B_y$", center="Node") bz = field.empty(crds, name="$B_z$", center="Node") fld = field.empty(crds, name="B", nr_comps=3, center="Node", layout="interlaced") X, Y, Z = crds.get_crds(shaped=True) x01, y01, z01 = 0.5, 0.5, 0.5 x02, y02, z02 = 0.5, 0.5, 0.5 x03, y03, z03 = 0.5, 0.5, 0.5 bx[:] = 0.0 + 1.0 * (X - x01) + 1.0 * (Y - y01) + 1.0 * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) + 1.0 * (Y - y01) * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) * (Z - z01) by[:] = 0.0 + 1.0 * (X - x02) - 1.0 * (Y - y02) + 1.0 * (Z - z02) + \ 1.0 * (X - x02) * (Y - y02) + 1.0 * (Y - y02) * (Z - z02) - \ 1.0 * (X - x02) * (Y - y02) * (Z - z02) bz[:] = 0.0 + 1.0 * (X - x03) + 1.0 * (Y - y03) - 1.0 * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) + 1.0 * (Y - y03) * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) * (Z - z03) fld[..., 0] = bx fld[..., 1] = by fld[..., 2] = bz fig = mlab.figure(size=(1150, 850), bgcolor=(1.0, 1.0, 1.0), fgcolor=(0.0, 0.0, 0.0)) f1_src = vlab.add_field(bx) f2_src = vlab.add_field(by) f3_src = vlab.add_field(bz) mlab.pipeline.iso_surface(f1_src, contours=[0.0], opacity=1.0, color=(1.0, 0.0, 0.0)) mlab.pipeline.iso_surface(f2_src, contours=[0.0], opacity=1.0, color=(0.0, 1.0, 0.0)) mlab.pipeline.iso_surface(f3_src, contours=[0.0], opacity=1.0, color=(0.0, 0.0, 1.0)) mlab.axes() mlab.show() nullpt = cycalc.interp_trilin(fld, [(0.5, 0.5, 0.5)]) print("f(0.5, 0.5, 0.5):", nullpt) ax1 = plt.subplot2grid((4, 3), (0, 0)) all_roots = [] positive_roots = [] ix = iy = iz = 0 for di, d in enumerate([0, -1]): #### XY face a1 = bx[iz + d, iy, ix] b1 = bx[iz + d, iy, ix - 1] - a1 c1 = bx[iz + d, iy - 1, ix] - a1 d1 = bx[iz + d, iy - 1, ix - 1] - c1 - b1 - a1 a2 = by[iz + d, iy, ix] b2 = by[iz + d, iy, ix - 1] - a2 c2 = by[iz + d, iy - 1, ix] - a2 d2 = by[iz + d, iy - 1, ix - 1] - c2 - b2 - a2 a3 = bz[iz + d, iy, ix] b3 = bz[iz + d, iy, ix - 1] - a3 c3 = bz[iz + d, iy - 1, ix] - a3 d3 = bz[iz + d, iy - 1, ix - 1] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((rt1, rt2, d)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((rt1, rt2, d)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (xh - xl) * roots1 + xl roots2 = (yh - yl) * roots2 + yl xp = np.linspace(0.0, 1.0, nx) # plt.subplot(121) plt.subplot2grid((4, 3), (0 + 2 * di, 0), sharex=ax1, sharey=ax1) vlt.plot(fld['x'], "z={0}i".format(d), plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format( xl, xh, yl, yh)) y1 = -(a1 + b1 * xp) / (c1 + d1 * xp) plt.plot(x, (yh - yl) * y1 + yl, 'k') for i, xrt, yrt in zip(count(), roots1, roots2): plt.plot(xrt, yrt, markers[i]) # plt.subplot(122) plt.subplot2grid((4, 3), (1 + 2 * di, 0), sharex=ax1, sharey=ax1) vlt.plot(fld['y'], "z={0}i".format(d), plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format( xl, xh, yl, yh)) y2 = -(a2 + b2 * xp) / (c2 + d2 * xp) plt.plot(x, (yh - yl) * y2 + yl, 'k') for xrt, yrt in zip(roots1, roots2): plt.plot(xrt, yrt, markers[i]) #### YZ face a1 = bx[iz, iy, ix + d] b1 = bx[iz, iy - 1, ix + d] - a1 c1 = bx[iz - 1, iy, ix + d] - a1 d1 = bx[iz - 1, iy - 1, ix + d] - c1 - b1 - a1 a2 = by[iz, iy, ix + d] b2 = by[iz, iy - 1, ix + d] - a2 c2 = by[iz - 1, iy, ix + d] - a2 d2 = by[iz - 1, iy - 1, ix + d] - c2 - b2 - a2 a3 = bz[iz, iy, ix + d] b3 = bz[iz, iy - 1, ix + d] - a3 c3 = bz[iz - 1, iy, ix + d] - a3 d3 = bz[iz - 1, iy - 1, ix + d] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((d, rt1, rt2)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((d, rt1, rt2)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (yh - yl) * roots1 + yl roots2 = (zh - zl) * roots2 + zl yp = np.linspace(0.0, 1.0, ny) # plt.subplot(121) plt.subplot2grid((4, 3), (0 + 2 * di, 1), sharex=ax1, sharey=ax1) vlt.plot(fld['x'], "x={0}i".format(d), plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format( yl, yh, zl, zh)) z1 = -(a1 + b1 * yp) / (c1 + d1 * yp) plt.plot(y, (zh - zl) * z1 + zl, 'k') for i, yrt, zrt in zip(count(), roots1, roots2): plt.plot(yrt, zrt, markers[i]) # plt.subplot(122) plt.subplot2grid((4, 3), (1 + 2 * di, 1), sharex=ax1, sharey=ax1) vlt.plot(fld['y'], "x={0}i".format(d), plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format( yl, yh, zl, zh)) z1 = -(a2 + b2 * yp) / (c2 + d2 * yp) plt.plot(y, (zh - zl) * z1 + zl, 'k') for i, yrt, zrt in zip(count(), roots1, roots2): plt.plot(yrt, zrt, markers[i]) #### ZX face a1 = bx[iz, iy + d, ix] b1 = bx[iz - 1, iy + d, ix] - a1 c1 = bx[iz, iy + d, ix - 1] - a1 d1 = bx[iz - 1, iy + d, ix - 1] - c1 - b1 - a1 a2 = by[iz, iy + d, ix] b2 = by[iz - 1, iy + d, ix] - a2 c2 = by[iz, iy + d, ix - 1] - a2 d2 = by[iz - 1, iy + d, ix - 1] - c2 - b2 - a2 a3 = bz[iz, iy + d, ix] b3 = bz[iz - 1, iy + d, ix] - a3 c3 = bz[iz, iy + d, ix - 1] - a3 d3 = bz[iz - 1, iy + d, ix - 1] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((rt2, d, rt1)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((rt2, d, rt1)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (zh - zl) * roots1 + zl roots2 = (xh - xl) * roots2 + xl zp = np.linspace(0.0, 1.0, nz) # plt.subplot(121) plt.subplot2grid((4, 3), (0 + 2 * di, 2), sharex=ax1, sharey=ax1) vlt.plot(fld['x'], "y={0}i".format(d), plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format( xl, xh, zl, zh)) x1 = -(a1 + b1 * zp) / (c1 + d1 * zp) plt.plot(z, (xh - xl) * x1 + xl, 'k') for i, zrt, xrt in zip(count(), roots1, roots2): plt.plot(xrt, zrt, markers[i]) # plt.subplot(121) plt.subplot2grid((4, 3), (1 + 2 * di, 2), sharex=ax1, sharey=ax1) vlt.plot(fld['y'], "y={0}i".format(d), plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format( xl, xh, zl, zh)) x1 = -(a2 + b2 * zp) / (c2 + d2 * zp) plt.plot(z, (xh - xl) * x1 + xl, 'k') for i, zrt, xrt in zip(count(), roots1, roots2): plt.plot(xrt, zrt, markers[i]) print("all:", len(all_roots), "positive:", len(positive_roots)) if len(all_roots) % 2 == 1: print("something is fishy, there are an odd number of root points " "on the surface of your cube, there is probably a degenerate " "line or surface of nulls") print("Null Point?", (len(positive_roots) % 2 == 1)) plt.show()