Exemple #1
0
def run_test_3d(f, main__file__, show=False):
    vlt.clf()
    slc = "x=-20f:12f, y=0f"
    plot_kwargs = dict(title=True, earth=True)
    vlt.subplot(141)
    vlt.plot(f['pp'], slc, logscale=True, **plot_kwargs)
    vlt.subplot(142)
    vlt.plot(viscid.magnitude(f['bcc']), slc, logscale=True, **plot_kwargs)
    vlt.plot2d_quiver(f['v'][slc],
                      step=5,
                      color='y',
                      pivot='mid',
                      width=0.03,
                      scale=600)
    vlt.subplot(143)
    vlt.plot(f['jy'], slc, clim=(-0.005, 0.005), **plot_kwargs)
    vlt.streamplot(f['v'][slc], linewidth=0.3)
    vlt.subplot(144)
    vlt.plot(f['jy'], "x=7f:12f, y=0f, z=0f")

    plt.suptitle("3D File")
    vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, wspace=1.3))
    plt.gcf().set_size_inches(10, 4)

    vlt.savefig(next_plot_fname(main__file__))
    if show:
        vlt.show()
def do_test(lines, scalars, show=False, txt=""):
    viscid.logger.info('--> ' + txt)
    title = txt + '\n' + "\n".join(
        textwrap.wrap("scalars = {0}".format(scalars), width=50))

    try:
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt

        vlt.clf()
        vlt.plot_lines(lines, scalars=scalars)
        plt.title(title)
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if show:
            vlt.show()
    except ImportError:
        pass

    try:
        from mayavi import mlab
        vlab, _ = get_mvi_fig()

        vlab.clf()
        vlab.plot_lines3d(lines, scalars=scalars)
        vlab.fancy_axes()
        mlab.text(0.05, 0.05, title)
        vlab.savefig(next_plot_fname(__file__, series='q3'))
        if show:
            vlab.show(stop=True)
    except ImportError:
        pass
def run_test_2d(f, main__file__, show=False):
    vlt.clf()
    slc = "x=-20j:12j, y=0j"
    plot_kwargs = dict(title=True, earth=True)
    vlt.subplot(141)
    vlt.plot(f['pp'], slc, logscale=True, **plot_kwargs)
    vlt.plot(np.abs(f['psi']), style='contour', logscale=True, levels=30,
             linewidths=0.8, colors='grey', linestyles='solid', colorbar=None,
             x=(-20, 12))
    vlt.subplot(142)
    vlt.plot(viscid.magnitude(f['bcc']), slc, logscale=True, **plot_kwargs)
    vlt.plot2d_quiver(f['v'][slc], step=5, color='y', pivot='mid', width=0.03,
                      scale=600)
    vlt.subplot(143)
    vlt.plot(f['jy'], slc, clim=[-0.005, 0.005], **plot_kwargs)
    vlt.streamplot(f['v'][slc], linewidth=0.3)
    vlt.subplot(144)
    vlt.plot(f['jy'], "x=7j:12j, y=0j, z=0j")

    plt.suptitle("2D File")
    vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, wspace=1.3))
    plt.gcf().set_size_inches(10, 4)

    vlt.savefig(next_plot_fname(main__file__))
    if show:
        vlt.show()
Exemple #4
0
def do_test(lines, scalars, show=False, txt=""):
    viscid.logger.info('--> ' + txt)
    title = txt + '\n' + "\n".join(textwrap.wrap("scalars = {0}".format(scalars),
                                                 width=50))

    try:
        from matplotlib import pyplot as plt
        from viscid.plot import vpyplot as vlt

        vlt.clf()
        vlt.plot_lines(lines, scalars=scalars)
        plt.title(title)
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if show:
            vlt.show()
    except ImportError:
        pass

    try:
        from mayavi import mlab
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not show,
                              bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        vlab.clf()
        vlab.plot_lines3d(lines, scalars=scalars)
        vlab.fancy_axes()
        mlab.text(0.05, 0.05, title)
        vlab.savefig(next_plot_fname(__file__, series='q3'))
        if show:
            vlab.show(stop=True)
    except ImportError:
        pass
def do_test(lines, scalars, show=False, txt=""):
    viscid.logger.info('--> ' + txt)
    title = txt + '\n' + "\n".join(textwrap.wrap("scalars = {0}".format(scalars),
                                                 width=50))

    try:
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt

        vlt.clf()
        vlt.plot_lines(lines, scalars=scalars)
        plt.title(title)
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if show:
            vlt.show()
    except ImportError:
        pass

    try:
        from mayavi import mlab
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not show,
                              bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        vlab.clf()
        vlab.plot_lines3d(lines, scalars=scalars)
        vlab.fancy_axes()
        mlab.text(0.05, 0.05, title)
        vlab.savefig(next_plot_fname(__file__, series='q3'))
        if show:
            vlab.show(stop=True)
    except ImportError:
        pass
def run_test_3d(f, main__file__, show=False):
    vlt.clf()
    slc = "x=-20j:12j, y=0j"
    plot_kwargs = dict(title=True, earth=True)
    vlt.subplot(141)
    vlt.plot(f['pp'], slc, logscale=True, **plot_kwargs)
    vlt.subplot(142)
    vlt.plot(viscid.magnitude(f['bcc']), slc, logscale=True, **plot_kwargs)
    vlt.plot2d_quiver(f['v'][slc], step=5, color='y', pivot='mid', width=0.03,
                      scale=600)
    vlt.subplot(143)
    vlt.plot(f['jy'], slc, clim=(-0.005, 0.005), **plot_kwargs)
    vlt.streamplot(f['v'][slc], linewidth=0.3)
    vlt.subplot(144)
    vlt.plot(f['jy'], "x=7j:12j, y=0j, z=0j")

    plt.suptitle("3D File")
    vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, wspace=1.3))
    plt.gcf().set_size_inches(10, 4)

    vlt.savefig(next_plot_fname(main__file__))
    if show:
        vlt.show()
Exemple #7
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--notwo", dest='notwo', action="store_true")
    parser.add_argument("--nothree", dest='nothree', action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    # #################################################
    # viscid.logger.info("Testing field lines on 2d field...")
    B = viscid.make_dipole(twod=True)
    line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B,
             line,
             plot2d=plot2d,
             plot3d=plot3d,
             title='2D',
             show=args.show,
             ibound=0.07,
             obound0=obound0,
             obound1=obound1)

    #################################################
    viscid.logger.info("Testing field lines on 3d field...")
    B = viscid.make_dipole(m=[0.2, 0.3, -0.9])
    sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B,
             sphere,
             plot2d=plot2d,
             plot3d=plot3d,
             title='3D',
             show=args.show,
             ibound=0.12,
             obound0=obound0,
             obound1=obound1,
             method=viscid.RK12)

    # The Remainder of this test makes sure higher order methods are indeed
    # more accurate than lower order methods... this could find a bug in
    # the integrators

    ##################################################
    # test accuracy of streamlines in an ideal dipole
    cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
    m = cotr.get_dipole_moment(crd_system='gse')
    seeds = viscid.seed.Sphere((0.0, 0.0, 0.0),
                               2.0,
                               pole=-m,
                               ntheta=25,
                               nphi=25,
                               thetalim=(5, 90),
                               philim=(5, 360),
                               phi_endpoint=False)
    B = viscid.make_dipole(m=m,
                           crd_system='gse',
                           n=(256, 256, 256),
                           l=(-25, -25, -25),
                           h=(25, 25, 25),
                           dtype='f8')

    seeds_xyz = seeds.get_points()
    # seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]
    seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]

    e1_lines, e1_lsps, t_e1 = lines_and_lsps(B,
                                             seeds,
                                             method='euler1',
                                             ibound=1.0,
                                             cotr=cotr)
    rk2_lines, rk2_lsps, t_rk2 = lines_and_lsps(B,
                                                seeds,
                                                method='rk2',
                                                ibound=1.0,
                                                cotr=cotr)
    rk4_lines, rk4_lsps, t_rk4 = lines_and_lsps(B,
                                                seeds,
                                                method='rk4',
                                                ibound=1.0,
                                                cotr=cotr)
    e1a_lines, e1a_lsps, t_e1a = lines_and_lsps(B,
                                                seeds,
                                                method='euler1a',
                                                ibound=1.0,
                                                cotr=cotr)
    rk12_lines, rk12_lsps, t_rk12 = lines_and_lsps(B,
                                                   seeds,
                                                   method='rk12',
                                                   ibound=1.0,
                                                   cotr=cotr)
    rk45_lines, rk45_lsps, t_rk45 = lines_and_lsps(B,
                                                   seeds,
                                                   method='rk45',
                                                   ibound=1.0,
                                                   cotr=cotr)

    def _calc_rel_diff(_lsp, _ideal_lsp, _d):
        _diffs = []
        for _ilsp, _iideal in zip(_lsp, _ideal_lsp.T):
            _a = _ilsp[_d, :]
            _b = _iideal[_d]
            _diffs.append((_a - _b) / _b)
        return _diffs

    lshell_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 0)
    phi_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 1)

    lshell_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 0)
    phi_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 1)

    lshell_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 0)
    phi_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 1)

    lshell_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 0)
    phi_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 1)

    lshell_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 0)
    phi_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 1)

    lshell_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 0)
    phi_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 1)

    methods = [
        'Euler 1', 'Runge Kutta 2', 'Runge Kutta 4', 'Euler 1 Adaptive Step',
        'Runge Kutta 12 Adaptive Step', 'Runge Kutta 45 Adaptive Step'
    ]
    wall_ts = [t_e1, t_rk2, t_rk4, t_e1a, t_rk12, t_rk45]
    all_lines = [
        e1_lines, rk2_lines, rk4_lines, e1a_lines, rk12_lines, rk45_lines
    ]
    all_lshell_diffs = [
        lshell_diff_e1, lshell_diff_rk2, lshell_diff_rk4, lshell_diff_e1a,
        lshell_diff_rk12, lshell_diff_rk45
    ]
    lshell_diffs = [
        np.abs(np.concatenate(lshell_diff_e1, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk2, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk4, axis=0)),
        np.abs(np.concatenate(lshell_diff_e1a, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk12, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk45, axis=0))
    ]
    phi_diffs = [
        np.abs(np.concatenate(phi_diff_e1, axis=0)),
        np.abs(np.concatenate(phi_diff_rk2, axis=0)),
        np.abs(np.concatenate(phi_diff_rk4, axis=0)),
        np.abs(np.concatenate(phi_diff_e1a, axis=0)),
        np.abs(np.concatenate(phi_diff_rk12, axis=0)),
        np.abs(np.concatenate(phi_diff_rk45, axis=0))
    ]
    npts = [len(lsd) for lsd in lshell_diffs]
    lshell_75 = [np.percentile(lsdiff, 75) for lsdiff in lshell_diffs]

    # # 3D DEBUG PLOT:: for really getting under the covers
    # vlab.clf()
    # earth1 = viscid.seed.Sphere((0.0, 0.0, 0.0), 1.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls1 = viscid.xyz2lsrlp(earth1.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth2 = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls2 = viscid.xyz2lsrlp(earth2.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth4 = viscid.seed.Sphere((0.0, 0.0, 0.0), 4.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls4 = viscid.xyz2lsrlp(earth4.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # clim = [2.0, 6.0]
    # vlab.mesh_from_seeds(earth1, scalars=ls1, clim=clim, logscale=True)
    # vlab.mesh_from_seeds(earth2, scalars=ls2, clim=clim, logscale=True, opacity=0.5)
    # vlab.mesh_from_seeds(earth4, scalars=ls2, clim=clim, logscale=True, opacity=0.25)
    # vlab.plot3d_lines(e1_lines, scalars=[_e1_lsp[0, :] for _e1_lsp in e1_lsps],
    #                  clim=clim, logscale=True)
    # vlab.colorbar(title="L-Shell")
    # vlab.show()

    assert lshell_75[1] < lshell_75[0], "RK2 should have less error than Euler"
    assert lshell_75[2] < lshell_75[1], "RK4 should have less error than RK2"
    assert lshell_75[3] < lshell_75[
        0], "Euler 1a should have less error than Euler 1"
    assert lshell_75[4] < lshell_75[
        0], "RK 12 should have less error than Euler 1"
    assert lshell_75[5] < lshell_75[1], "RK 45 should have less error than RK2"

    try:
        if not plot2d:
            raise ImportError
        from matplotlib import pyplot as plt
        from viscid.plot import vpyplot as vlt

        # stats on error for all points on all lines
        _ = plt.figure(figsize=(15, 8))
        ax1 = vlt.subplot(121)
        v = plt.violinplot(lshell_diffs,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(lshell_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.title('L-Shell')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        ax2 = vlt.subplot(122)
        v = plt.violinplot(phi_diffs,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(phi_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax2.get_yaxis().set_visible(False)
        plt.title('Longitude')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        vlt.auto_adjust_subplots()

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # stats for ds for all points on all lines
        _ = plt.figure(figsize=(10, 8))
        ax1 = vlt.subplot(111)

        ds = [
            np.concatenate([
                np.linalg.norm(_l[:, 1:] - _l[:, :-1], axis=0) for _l in lines
            ]) for lines in all_lines
        ]
        v = plt.violinplot(ds,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            stat_txt = format_data_range(ds[i])
            plt.text(xl + 0.01 * (xh - xl), i + 1.15, txt, color=c)
            plt.text(xl + 0.01 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.xscale('log')
        plt.title('Step Size')
        plt.xlabel('Absolute Step Size')
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # random other information
        _ = plt.figure(figsize=(13, 10))

        ## wall time for each method
        vlt.subplot(221)
        plt.scatter(range(len(methods)),
                    wall_ts,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_ts[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Wall Time (s)")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_ts), np.max(wall_ts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## number of points calculated for each method
        vlt.subplot(222)
        plt.scatter(range(len(methods)),
                    npts,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, npts[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Number of Streamline Points Calculated")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(npts), np.max(npts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## Wall time per segment, this should show the overhead of the method
        vlt.subplot(223)
        wall_t_per_seg = np.asarray(wall_ts) / np.asarray(npts)
        plt.scatter(range(len(methods)),
                    wall_t_per_seg,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_t_per_seg[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Wall Time Per Line Segment")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_t_per_seg), np.max(wall_t_per_seg)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        plt.gca().xaxis.set_major_formatter(viscid.plot.mpl_extra.steve_axfmt)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## 75th percentile of l-shell error for each method
        vlt.subplot(224)
        plt.scatter(range(len(methods)),
                    lshell_75,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        plt.yscale('log')

        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, lshell_75[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("75th Percentile of Relative L-Shell Error")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        ymin, ymax = np.min(lshell_75), np.max(lshell_75)
        plt.ylim(0.75 * ymin, 2.5 * ymax)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        vlt.auto_adjust_subplots(subplot_params=dict(wspace=0.25, hspace=0.15))

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800],
                              offscreen=not args.show,
                              bgcolor=(1, 1, 1),
                              fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        for i, method in zip(count(), methods):
            # if i in (3, 4):
            #     next_plot_fname(__file__, series='q3')
            #     print(i, "::", [line.shape[1] for line in all_lines[i]])
            #     # continue
            vlab.clf()
            _lshell_diff = [np.abs(s) for s in all_lshell_diffs[i]]
            vlab.plot3d_lines(all_lines[i], scalars=_lshell_diff)
            vlab.colorbar(title="Relative L-Shell Error (as fraction)")
            vlab.title(method, size=0.5)
            vlab.orientation_axes()
            vlab.view(azimuth=40,
                      elevation=140,
                      distance=80.0,
                      focalpoint=[0, 0, 0])
            vlab.savefig(next_plot_fname(__file__, series='q3'))
            if args.show:
                vlab.show()
    except ImportError:
        pass

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0
import seaborn as sns
import viscid
from viscid.plot import vpyplot as vlt
import matplotlib.pyplot as plt

f = viscid.load_file('./otico_001.3d.xdmf')

mymap = sns.diverging_palette(28, 240, s=95, l=50, as_cmap=True)

figure = plt.figure(figsize=(14, 10))
g = f.get_grid(time=12)
vlt.plot(g['bx']['z=0'], cmap=mymap, style='contourf', levels=256)
vlt.savefig('OT_bx.png')
plt.show()
Exemple #9
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--show", "--plot", action="store_true")
    args = vutil.common_argparse(parser)

    b, e = make_arcade(8.0, N=[64, 64, 64])
    epar = viscid.project(e, b)
    epar.pretty_name = "E parallel"

    ###############
    # Calculate Xi
    seeds = viscid.Volume(xl=[-10, 0.0, -10], xh=[10, 0.0, 10], n=[64, 1, 64])
    b_lines, _ = viscid.calc_streamlines(b, seeds)

    xi_dat = viscid.integrate_along_lines(b_lines, e, reduction='dot')
    xi = seeds.wrap_field(xi_dat, name='xi', pretty_name=r"$\Xi$")

    ################################
    # Make 2D Matplotlib plot of Xi
    vlt.plot(xi,
             x=(-10, 10),
             y=(-10, 10),
             style='contourf',
             levels=256,
             lin=(2e-4, 1.5718))
    vlt.plot(xi,
             x=(-10, 10),
             y=(-10, 10),
             style='contour',
             colors='grey',
             levels=[0.5, 1.0])
    vlt.savefig(next_plot_fname(__file__))
    if args.show:
        vlt.show()

    ############################################################
    # Make 3D mayavi plot of Xi and the 'brightest' field lines
    # as well as some other field lines for context
    try:
        from viscid.plot import vlab
    except ImportError:
        xfail("Mayavi not installed")

    vlab.figure(size=[1200, 800], offscreen=not args.show)

    inds = np.argsort(xi_dat)[-64:]
    inds = np.concatenate([inds, np.arange(len(xi_dat))[::71]])
    s = vlab.plot_lines(b_lines[inds], scalars=epar, cmap='viridis')
    vlab.mesh_from_seeds(seeds, scalars=xi, cmap='inferno')
    vlab.colorbar(s, orientation='horizontal', title=epar.pretty_name)
    # vlab.streamline(b, scalars=e, seedtype='sphere', seed_resolution=4,
    #                 integration_direction='both')

    oa = vlab.orientation_axes()
    oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0)
    vlab.view(roll=0,
              azimuth=90,
              elevation=25,
              distance=30.0,
              focalpoint=[0, 2, 0])

    vlab.savefig(next_plot_fname(__file__))
    if args.show:
        vlab.show()

    try:
        vlab.mlab.close()
    except AttributeError:
        pass

    return 0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--notwo", dest='notwo', action="store_true")
    parser.add_argument("--nothree", dest='nothree', action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    # #################################################
    # viscid.logger.info("Testing field lines on 2d field...")
    B = viscid.make_dipole(twod=True)
    line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B, line, plot2d=plot2d, plot3d=plot3d, title='2D', show=args.show,
             ibound=0.07, obound0=obound0, obound1=obound1)

    #################################################
    viscid.logger.info("Testing field lines on 3d field...")
    B = viscid.make_dipole(m=[0.2, 0.3, -0.9])
    sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B, sphere, plot2d=plot2d, plot3d=plot3d, title='3D', show=args.show,
             ibound=0.12, obound0=obound0, obound1=obound1, method=viscid.RK12)

    # The Remainder of this test makes sure higher order methods are indeed
    # more accurate than lower order methods... this could find a bug in
    # the integrators

    ##################################################
    # test accuracy of streamlines in an ideal dipole
    cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
    m = cotr.get_dipole_moment(crd_system='gse')
    seeds = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=25, nphi=25,
                               thetalim=(5, 90), philim=(5, 360), phi_endpoint=False)
    B = viscid.make_dipole(m=m, crd_system='gse', n=(256, 256, 256),
                           l=(-25, -25, -25), h=(25, 25, 25), dtype='f8')

    seeds_xyz = seeds.get_points()
    # seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]
    seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]

    e1_lines, e1_lsps, t_e1 = lines_and_lsps(B, seeds, method='euler1',
                                             ibound=1.0, cotr=cotr)
    rk2_lines, rk2_lsps, t_rk2 = lines_and_lsps(B, seeds, method='rk2',
                                                ibound=1.0, cotr=cotr)
    rk4_lines, rk4_lsps, t_rk4 = lines_and_lsps(B, seeds, method='rk4',
                                                ibound=1.0, cotr=cotr)
    e1a_lines, e1a_lsps, t_e1a = lines_and_lsps(B, seeds, method='euler1a',
                                                ibound=1.0, cotr=cotr)
    rk12_lines, rk12_lsps, t_rk12 = lines_and_lsps(B, seeds, method='rk12',
                                                   ibound=1.0, cotr=cotr)
    rk45_lines, rk45_lsps, t_rk45 = lines_and_lsps(B, seeds, method='rk45',
                                                   ibound=1.0, cotr=cotr)

    def _calc_rel_diff(_lsp, _ideal_lsp, _d):
        _diffs = []
        for _ilsp, _iideal in zip(_lsp, _ideal_lsp.T):
            _a = _ilsp[_d, :]
            _b = _iideal[_d]
            _diffs.append((_a - _b) / _b)
        return _diffs

    lshell_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 0)
    phi_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 1)

    lshell_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 0)
    phi_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 1)

    lshell_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 0)
    phi_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 1)

    lshell_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 0)
    phi_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 1)

    lshell_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 0)
    phi_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 1)

    lshell_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 0)
    phi_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 1)

    methods = ['Euler 1', 'Runge Kutta 2', 'Runge Kutta 4',
               'Euler 1 Adaptive Step', 'Runge Kutta 12 Adaptive Step',
               'Runge Kutta 45 Adaptive Step']
    wall_ts = [t_e1, t_rk2, t_rk4, t_e1a, t_rk12, t_rk45]
    all_lines = [e1_lines, rk2_lines, rk4_lines, e1a_lines, rk12_lines,
                 rk45_lines]
    all_lshell_diffs = [lshell_diff_e1, lshell_diff_rk2, lshell_diff_rk4,
                        lshell_diff_e1a, lshell_diff_rk12, lshell_diff_rk45]
    lshell_diffs = [np.abs(np.concatenate(lshell_diff_e1, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk2, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk4, axis=0)),
                    np.abs(np.concatenate(lshell_diff_e1a, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk12, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk45, axis=0))]
    phi_diffs = [np.abs(np.concatenate(phi_diff_e1, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk2, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk4, axis=0)),
                 np.abs(np.concatenate(phi_diff_e1a, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk12, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk45, axis=0))]
    npts = [len(lsd) for lsd in lshell_diffs]
    lshell_75 = [np.percentile(lsdiff, 75) for lsdiff in lshell_diffs]

    # # 3D DEBUG PLOT:: for really getting under the covers
    # vlab.clf()
    # earth1 = viscid.seed.Sphere((0.0, 0.0, 0.0), 1.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls1 = viscid.xyz2lsrlp(earth1.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth2 = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls2 = viscid.xyz2lsrlp(earth2.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth4 = viscid.seed.Sphere((0.0, 0.0, 0.0), 4.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls4 = viscid.xyz2lsrlp(earth4.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # clim = [2.0, 6.0]
    # vlab.mesh_from_seeds(earth1, scalars=ls1, clim=clim, logscale=True)
    # vlab.mesh_from_seeds(earth2, scalars=ls2, clim=clim, logscale=True, opacity=0.5)
    # vlab.mesh_from_seeds(earth4, scalars=ls2, clim=clim, logscale=True, opacity=0.25)
    # vlab.plot3d_lines(e1_lines, scalars=[_e1_lsp[0, :] for _e1_lsp in e1_lsps],
    #                  clim=clim, logscale=True)
    # vlab.colorbar(title="L-Shell")
    # vlab.show()

    assert lshell_75[1] < lshell_75[0], "RK2 should have less error than Euler"
    assert lshell_75[2] < lshell_75[1], "RK4 should have less error than RK2"
    assert lshell_75[3] < lshell_75[0], "Euler 1a should have less error than Euler 1"
    assert lshell_75[4] < lshell_75[0], "RK 12 should have less error than Euler 1"
    assert lshell_75[5] < lshell_75[1], "RK 45 should have less error than RK2"

    try:
        if not plot2d:
            raise ImportError
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt

        # stats on error for all points on all lines
        _ = plt.figure(figsize=(15, 8))
        ax1 = vlt.subplot(121)
        v = plt.violinplot(lshell_diffs, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(lshell_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.title('L-Shell')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        ax2 = vlt.subplot(122)
        v = plt.violinplot(phi_diffs, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(phi_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax2.get_yaxis().set_visible(False)
        plt.title('Longitude')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        vlt.auto_adjust_subplots()

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # stats for ds for all points on all lines
        _ = plt.figure(figsize=(10, 8))
        ax1 = vlt.subplot(111)

        ds = [np.concatenate([np.linalg.norm(_l[:, 1:] - _l[:, :-1], axis=0)
                              for _l in lines]) for lines in all_lines]
        v = plt.violinplot(ds, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            stat_txt = format_data_range(ds[i])
            plt.annotate(txt, xy=(0.55, i / len(methods) + 0.1), color=c,
                         xycoords='axes fraction')
            plt.annotate(stat_txt, xy=(0.55, i / len(methods) + 0.04), color=c,
                         xycoords='axes fraction')
        ax1.get_yaxis().set_visible(False)
        plt.xscale('log')
        plt.title('Step Size')
        plt.xlabel('Absolute Step Size')
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()


        # random other information
        _ = plt.figure(figsize=(13, 10))

        ## wall time for each method
        vlt.subplot(221)
        plt.scatter(range(len(methods)), wall_ts, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_ts[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Wall Time (s)")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_ts), np.max(wall_ts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## number of points calculated for each method
        vlt.subplot(222)
        plt.scatter(range(len(methods)), npts, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, npts[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Number of Streamline Points Calculated")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(npts), np.max(npts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## Wall time per segment, this should show the overhead of the method
        vlt.subplot(223)
        wall_t_per_seg = np.asarray(wall_ts) / np.asarray(npts)
        plt.scatter(range(len(methods)), wall_t_per_seg, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_t_per_seg[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Wall Time Per Line Segment")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_t_per_seg), np.max(wall_t_per_seg)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        plt.gca().xaxis.set_major_formatter(viscid.plot.mpl_extra.steve_axfmt)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## 75th percentile of l-shell error for each method
        vlt.subplot(224)
        plt.scatter(range(len(methods)), lshell_75, color=colors,
                        s=150, marker='s', edgecolors='none')
        plt.yscale('log')

        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, lshell_75[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("75th Percentile of Relative L-Shell Error")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        ymin, ymax = np.min(lshell_75), np.max(lshell_75)
        plt.ylim(0.75 * ymin, 2.5 * ymax)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        vlt.auto_adjust_subplots(subplot_params=dict(wspace=0.25, hspace=0.15))

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not args.show,
                              bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        for i, method in zip(count(), methods):
            # if i in (3, 4):
            #     next_plot_fname(__file__, series='q3')
            #     print(i, "::", [line.shape[1] for line in all_lines[i]])
            #     # continue
            vlab.clf()
            _lshell_diff = [np.abs(s) for s in all_lshell_diffs[i]]
            vlab.plot3d_lines(all_lines[i], scalars=_lshell_diff)
            vlab.colorbar(title="Relative L-Shell Error (as fraction)")
            vlab.title(method, size=0.5)
            vlab.orientation_axes()
            vlab.view(azimuth=40, elevation=140, distance=80.0,
                      focalpoint=[0, 0, 0])
            vlab.savefig(next_plot_fname(__file__, series='q3'))
            if args.show:
                vlab.show()
    except ImportError:
        pass

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0