Exemple #1
0
    def test_image(self):
        tag = "layer1/layer2/image0"
        image_writer = self.writer.image(tag, 10, 1)
        num_passes = 10
        num_samples = 100
        shape = [10, 10, 3]

        for pass_ in range(num_passes):
            image_writer.start_sampling()
            for ins in range(num_samples):
                data = np.random.random(shape) * 256
                data = np.ndarray.flatten(data)
                image_writer.add_sample(shape, list(data))
            image_writer.finish_sampling()

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            image_reader = reader.image(tag)
            self.assertEqual(image_reader.caption(), tag)
            self.assertEqual(image_reader.num_records(), num_passes)

            image_record = image_reader.record(0, 1)
            self.assertTrue(np.equal(image_record.shape(), shape).all())
            data = image_record.data()
            self.assertEqual(len(data), np.prod(shape))

            image_tags = reader.tags("image")
            self.assertTrue(image_tags)
            self.assertEqual(len(image_tags), 1)
Exemple #2
0
    def test_check_image(self):
        '''
        check whether the storage will keep image data consistent
        '''
        print('check image')
        tag = "layer1/check/image1"
        image_writer = self.writer.image(tag, 10)

        image = Image.open("./dog.jpg")
        shape = [image.size[1], image.size[0], 3]
        origin_data = np.array(image.getdata()).flatten()

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:

            image_writer.start_sampling()
            image_writer.add_sample(shape, list(origin_data))
            image_writer.finish_sampling()

            # read and check whether the original image will be displayed
            image_reader = reader.image(tag)
            image_record = image_reader.record(0, 0)
            data = image_record.data()
            shape = image_record.shape()

            PIL_image_shape = (shape[0] * shape[1], shape[2])
            data = np.array(data, dtype='uint8').reshape(PIL_image_shape)
            print('origin', origin_data.flatten())
            print('data', data.flatten())
            image = Image.fromarray(data.reshape(shape))
Exemple #3
0
    def test_with_syntax(self):
        with self.writer.mode("train") as writer:
            scalar = writer.scalar("model/scalar/average")
            for i in range(10):
                scalar.add_record(i, float(i))

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            scalar = reader.scalar("model/scalar/average")
            self.assertEqual(scalar.caption(), "train")
Exemple #4
0
    def __init__(self, logdir, model, cache_timeout):
        self._reader = LogReader(logdir)
        if model:
            self._reader.model = model
        self.model_name = os.path.basename(model)

        # use a memory cache to reduce disk reading frequency.
        cache = MemCache(timeout=cache_timeout)
        self._cache = lib.cache_get(cache)
Exemple #5
0
    def test_scalar(self):
        print('test write')
        scalar = self.writer.scalar("model/scalar/min")
        # scalar.set_caption("model/scalar/min")
        for i in range(10):
            scalar.add_record(i, float(i))

        print('test read')
        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            scalar = reader.scalar("model/scalar/min")
            self.assertEqual(scalar.caption(), "train")
            records = scalar.records()
            ids = scalar.ids()
            self.assertTrue(
                np.equal(records, [float(i) for i in range(10 - 1)]).all())
            self.assertTrue(np.equal(ids, [float(i) for i in range(10)]).all())
            print('records', records)
            print('ids', ids)
Exemple #6
0
    def setUp(self):
        dir = "./tmp/mock"
        writer = LogWriter(dir, sync_cycle=30)

        add_scalar(writer, "train", "layer/scalar0/min", 1000, 1)
        add_scalar(writer, "test", "layer/scalar0/min", 1000, 10)
        add_scalar(writer, "valid", "layer/scalar0/min", 1000, 10)

        add_scalar(writer, "train", "layer/scalar0/max", 1000, 1)
        add_scalar(writer, "test", "layer/scalar0/max", 1000, 10)
        add_scalar(writer, "valid", "layer/scalar0/max", 1000, 10)

        add_image(writer, "train", "layer/image0", 7, 10, 1)
        add_image(writer, "test", "layer/image0", 7, 10, 3)

        add_image(writer, "train", "layer/image1", 7, 10, 1, shape=[30, 30, 2])
        add_image(writer, "test", "layer/image1", 7, 10, 1, shape=[30, 30, 2])

        add_histogram(writer, "train", "layer/histogram0", 100)
        add_histogram(writer, "test", "layer/histogram0", 100)

        self.reader = LogReader(dir)
Exemple #7
0
class StorageTest(unittest.TestCase):
    def setUp(self):
        self.dir = "./tmp/storage_test"
        self.writer = LogWriter(self.dir, sync_cycle=1).as_mode("train")

    def test_scalar(self):
        print('test write')
        scalar = self.writer.scalar("model/scalar/min")
        # scalar.set_caption("model/scalar/min")
        for i in range(10):
            scalar.add_record(i, float(i))

        print('test read')
        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            scalar = reader.scalar("model/scalar/min")
            self.assertEqual(scalar.caption(), "train")
            records = scalar.records()
            ids = scalar.ids()
            self.assertTrue(
                np.equal(records, [float(i) for i in range(10 - 1)]).all())
            self.assertTrue(np.equal(ids, [float(i) for i in range(10)]).all())
            print('records', records)
            print('ids', ids)

    def test_image(self):
        tag = "layer1/layer2/image0"
        image_writer = self.writer.image(tag, 10, 1)
        num_passes = 10
        num_samples = 100
        shape = [10, 10, 3]

        for pass_ in range(num_passes):
            image_writer.start_sampling()
            for ins in range(num_samples):
                data = np.random.random(shape) * 256
                data = np.ndarray.flatten(data)
                image_writer.add_sample(shape, list(data))
            image_writer.finish_sampling()

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            image_reader = reader.image(tag)
            self.assertEqual(image_reader.caption(), tag)
            self.assertEqual(image_reader.num_records(), num_passes)

            image_record = image_reader.record(0, 1)
            self.assertTrue(np.equal(image_record.shape(), shape).all())
            data = image_record.data()
            self.assertEqual(len(data), np.prod(shape))

            image_tags = reader.tags("image")
            self.assertTrue(image_tags)
            self.assertEqual(len(image_tags), 1)

    def test_check_image(self):
        '''
        check whether the storage will keep image data consistent
        '''
        print('check image')
        tag = "layer1/check/image1"
        image_writer = self.writer.image(tag, 10)

        image = Image.open("./dog.jpg")
        shape = [image.size[1], image.size[0], 3]
        origin_data = np.array(image.getdata()).flatten()

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:

            image_writer.start_sampling()
            image_writer.add_sample(shape, list(origin_data))
            image_writer.finish_sampling()

            # read and check whether the original image will be displayed
            image_reader = reader.image(tag)
            image_record = image_reader.record(0, 0)
            data = image_record.data()
            shape = image_record.shape()

            PIL_image_shape = (shape[0] * shape[1], shape[2])
            data = np.array(data, dtype='uint8').reshape(PIL_image_shape)
            print('origin', origin_data.flatten())
            print('data', data.flatten())
            image = Image.fromarray(data.reshape(shape))
            # manully check the image and found that nothing wrong with the image storage.
            # image.show()

    def test_with_syntax(self):
        with self.writer.mode("train") as writer:
            scalar = writer.scalar("model/scalar/average")
            for i in range(10):
                scalar.add_record(i, float(i))

        self.reader = LogReader(self.dir)
        with self.reader.mode("train") as reader:
            scalar = reader.scalar("model/scalar/average")
            self.assertEqual(scalar.caption(), "train")

    def test_modes(self):
        store = LogWriter(self.dir, sync_cycle=1)

        scalars = []

        for i in range(10):
            with store.mode("mode-%d" % i) as writer:
                scalar = writer.scalar("add/scalar0")
                scalars.append(scalar)

        for scalar in scalars[:-1]:
            for i in range(10):
                scalar.add_record(i, float(i))
Exemple #8
0
def main(args):
    config = Config(args.config)
    cfg = config(vars(args), mode=['train', 'init'])
    mdname = cfg['train']['model']
    vdl_dir = os.path.join(args.save_dir, cfg['init']['vdl_dir'])
    vdl_dir = os.path.join(vdl_dir, mdname)
    vdl_name = 'vdlrecords.' + mdname + '.log'
    vdl_log_dir = os.path.join(vdl_dir, vdl_name)

    fil_list = os.path.join(cfg['train']['root_path'],
                            cfg['train']['train_list'])
    mean = cfg['train']['mean']
    std = cfg['train']['std']

    custom = cfg['train']['custom']['type']
    if custom == True:
        print('use custom data')
        mean = cfg['train']['custom']['mean']
        std = cfg['train']['custom']['std']

    # image enhance
    trfm = imgehance(size=cfg['train']['sz'])

    # load dataset
    ds = SDataSet(path=cfg['train']['root_path'],
                  fl=fil_list,
                  sz=cfg['train']['sz'])

    train_ds = SubSet(ds, mode='train', mean=mean, std=std, transform=trfm)
    val_ds = SubSet(ds, mode='valid', mean=mean, std=std, transform=None)

    # select model
    net = modelset(mode=mdname, num_classes=cfg['init']['num_classes'])

    # load moel
    input = InputSpec([None, 3, 64, 64], 'float32', 'image')
    label = InputSpec([None, 1, 64, 64], 'int64', 'label')
    model = paddle.Model(net, input, label)
    #print(model.summary((-1, 3, 64, 64)))  #
    iters = 0
    epochs = 0
    if args.pretrain:
        model.load(path=os.path.join(args.save_dir, mdname) + '/' +
                   str(mdname))
        vdlreader = LogReader(file_path=vdl_log_dir)
        iters = vdlreader.get_data('scalar', 'train%miou')[-1].id + 1
        epochs = vdlreader.get_data('scalar', 'eval%miou')[-1].id + 1
    elif os.path.exists(vdl_dir):
        shutil.rmtree(vdl_dir)

    write = LogWriter(logdir=vdl_dir, file_name=vdl_name)

    opt = paddle.optimizer.Momentum(learning_rate=cfg['train']['lr'],
                                    parameters=model.parameters())
    model.prepare(
        optimizer=opt,
        loss=Loss(),
        metrics=Miou(num_classes=cfg['init']['num_classes'], name='miou'),
    )

    model.fit(
        train_ds,
        val_ds,
        epochs=cfg['train']['epoch'],
        batch_size=cfg['train']['batchsz'],
        log_freq=1,
        save_freq=cfg['train']['save_freq'],
        save_dir=os.path.join(args.save_dir, mdname) + '/' + str(mdname),
        verbose=1,
        num_workers=cfg['train']['num_workers'],
        callbacks=VDL(write=write, iters=iters,
                      epochs=epochs)  #VDL(logdir=vdl_dir)#
    )

    print('save model in {}'.format(os.path.join(args.save_dir, mdname)))
    model.save(path=os.path.join(args.save_dir, mdname) + '/' + str(mdname))
from visualdl import LogReader

log_reader = LogReader("./log")

print("Data associated with the train loss:\n")
with log_reader.mode("train") as logger:
    text_reader = logger.scalar("scalars/train_loss")
    print("Train loss =", text_reader.records())
    print("Ids = ", text_reader.ids())
    print("Timestamps =", text_reader.timestamps())

print("\nData associated with the test loss:\n")

with log_reader.mode("test") as logger:
    text_reader = logger.scalar("scalars/test_loss")
    print("Test losses =", text_reader.records())
    print("Ids = ", text_reader.ids())
    print("Timestamps =", text_reader.timestamps())

print("\nData associated with the test accuracy:\n")

with log_reader.mode("test") as logger:
    text_reader = logger.scalar("scalars/test_accuracy")
    print("Test accuracy =", text_reader.records())
    print("Ids = ", text_reader.ids())
    print("Timestamps =", text_reader.timestamps())